Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(5): 2603-2620, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35188560

RESUMEN

The Spt4-Spt5 complex is conserved and essential RNA polymerase elongation factor. To investigate the role of the Spt4-Spt5 complex in non-coding transcription during development, we used the unicellular model Paramecium tetraurelia. In this organism harboring both germline and somatic nuclei, massive transcription of the entire germline genome takes place during meiosis. This phenomenon starts a series of events mediated by different classes of non-coding RNAs that control developmentally programmed DNA elimination. We focused our study on Spt4, a small zinc-finger protein encoded in P. tetraurelia by two genes expressed constitutively and two genes expressed during meiosis. SPT4 genes are not essential in vegetative growth, but they are indispensable for sexual reproduction, even though genes from both expression families show functional redundancy. Silencing of the SPT4 genes resulted in the absence of double-stranded ncRNAs and reduced levels of scnRNAs - 25 nt-long sRNAs produced from these double-stranded precursors in the germline nucleus. Moreover, we observed that the presence of a germline-specific Spt4-Spt5m complex is necessary for transfer of the scnRNA-binding PIWI protein between the germline and somatic nucleus. Our study establishes that Spt4, together with Spt5m, is essential for expression of the germline genome and necessary for developmental genome rearrangements.


Asunto(s)
Genoma de Protozoos , Paramecium tetraurelia , Meiosis , Paramecium tetraurelia/citología , Paramecium tetraurelia/genética , Paramecium tetraurelia/crecimiento & desarrollo , ARN no Traducido/genética , Factores de Transcripción/metabolismo , Transcripción Genética
2.
Nucleic Acids Res ; 45(8): 4722-4732, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28053118

RESUMEN

Spt5 is a conserved and essential transcriptional regulator that binds directly to RNA polymerase and is involved in transcription elongation, polymerase pausing and various co-transcriptional processes. To investigate the role of Spt5 in non-coding transcription, we used the unicellular model Paramecium tetraurelia. In this ciliate, development is controlled by epigenetic mechanisms that use different classes of non-coding RNAs to target DNA elimination. We identified two SPT5 genes. One (STP5v) is involved in vegetative growth, while the other (SPT5m) is essential for sexual reproduction. We focused our study on SPT5m, expressed at meiosis and associated with germline nuclei during sexual processes. Upon Spt5m depletion, we observed absence of scnRNAs, piRNA-like 25 nt small RNAs produced at meiosis. The scnRNAs are a temporal copy of the germline genome and play a key role in programming DNA elimination. Moreover, Spt5m depletion abolishes elimination of all germline-limited sequences, including sequences whose excision was previously shown to be scnRNA-independent. This suggests that in addition to scnRNA production, Spt5 is involved in setting some as yet uncharacterized epigenetic information at meiosis. Our study establishes that Spt5m is crucial for developmental genome rearrangements and necessary for scnRNA production.


Asunto(s)
Meiosis/genética , Reproducción/genética , Transcripción Genética , Factores de Elongación Transcripcional/genética , Epigénesis Genética , Regulación de la Expresión Génica/genética , Reordenamiento Génico/genética , Genoma , Paramecium tetraurelia/genética
3.
PLoS Genet ; 11(7): e1005383, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26177014

RESUMEN

Because of their nuclear dimorphism, ciliates provide a unique opportunity to study the role of non-coding RNAs (ncRNAs) in the communication between germline and somatic lineages. In these unicellular eukaryotes, a new somatic nucleus develops at each sexual cycle from a copy of the zygotic (germline) nucleus, while the old somatic nucleus degenerates. In the ciliate Paramecium tetraurelia, the genome is massively rearranged during this process through the reproducible elimination of repeated sequences and the precise excision of over 45,000 short, single-copy Internal Eliminated Sequences (IESs). Different types of ncRNAs resulting from genome-wide transcription were shown to be involved in the epigenetic regulation of genome rearrangements. To understand how ncRNAs are produced from the entire genome, we have focused on a homolog of the TFIIS elongation factor, which regulates RNA polymerase II transcriptional pausing. Six TFIIS-paralogs, representing four distinct families, can be found in P. tetraurelia genome. Using RNA interference, we showed that TFIIS4, which encodes a development-specific TFIIS protein, is essential for the formation of a functional somatic genome. Molecular analyses and high-throughput DNA sequencing upon TFIIS4 RNAi demonstrated that TFIIS4 is involved in all kinds of genome rearrangements, including excision of ~48% of IESs. Localization of a GFP-TFIIS4 fusion revealed that TFIIS4 appears specifically in the new somatic nucleus at an early developmental stage, before IES excision. RT-PCR experiments showed that TFIIS4 is necessary for the synthesis of IES-containing non-coding transcripts. We propose that these IES+ transcripts originate from the developing somatic nucleus and serve as pairing substrates for germline-specific short RNAs that target elimination of their homologous sequences. Our study, therefore, connects the onset of zygotic non coding transcription to the control of genome plasticity in Paramecium, and establishes for the first time a specific role of TFIIS in non-coding transcription in eukaryotes.


Asunto(s)
Genoma , ARN Largo no Codificante/genética , Transcripción Genética , Factores de Elongación Transcripcional/genética , Linaje de la Célula , Células Germinativas , Secuenciación de Nucleótidos de Alto Rendimiento , Paramecium tetraurelia/genética , ARN Polimerasa II/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA