Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J R Soc Interface ; 17(167): 20190866, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32486951

RESUMEN

Information technologies enable programmers and engineers to design and synthesize systems of startling complexity that nonetheless behave as intended. This mastery of complexity is made possible by a hierarchy of formal abstractions that span from high-level programming languages down to low-level implementation specifications, with rigorous connections between the levels. DNA nanotechnology presents us with a new molecular information technology whose potential has not yet been fully unlocked in this way. Developing an effective hierarchy of abstractions may be critical for increasing the complexity of programmable DNA systems. Here, we build on prior practice to provide a new formalization of 'domain-level' representations of DNA strand displacement systems that has a natural connection to nucleic acid biophysics while still being suitable for formal analysis. Enumeration of unimolecular and bimolecular reactions provides a semantics for programmable molecular interactions, with kinetics given by an approximate biophysical model. Reaction condensation provides a tractable simplification of the detailed reactions that respects overall kinetic properties. The applicability and accuracy of the model is evaluated across a wide range of engineered DNA strand displacement systems. Thus, our work can serve as an interface between lower-level DNA models that operate at the nucleotide sequence level, and high-level chemical reaction network models that operate at the level of interactions between abstract species.


Asunto(s)
ADN , Nanotecnología , Fenómenos Biofísicos , Cinética , Lenguajes de Programación
2.
Nature ; 552(7683): 72-77, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29219968

RESUMEN

Nucleic acids (DNA and RNA) are widely used to construct nanometre-scale structures with ever increasing complexity, with possible application in fields such as structural biology, biophysics, synthetic biology and photonics. The nanostructures are formed through one-pot self-assembly, with early kilodalton-scale examples containing typically tens of unique DNA strands. The introduction of DNA origami, which uses many staple strands to fold one long scaffold strand into a desired structure, has provided access to megadalton-scale nanostructures that contain hundreds of unique DNA strands. Even larger DNA origami structures are possible, but manufacturing and manipulating an increasingly long scaffold strand remains a challenge. An alternative and more readily scalable approach involves the assembly of DNA bricks, which each consist of four short binding domains arranged so that the bricks can interlock. This approach does not require a scaffold; instead, the short DNA brick strands self-assemble according to specific inter-brick interactions. First-generation bricks used to create three-dimensional structures are 32 nucleotides long, consisting of four eight-nucleotide binding domains. Protocols have been designed to direct the assembly of hundreds of distinct bricks into well formed structures, but attempts to create larger structures have encountered practical challenges and had limited success. Here we show that DNA bricks with longer, 13-nucleotide binding domains make it possible to self-assemble 0.1-1-gigadalton, three-dimensional nanostructures from tens of thousands of unique components, including a 0.5-gigadalton cuboid containing about 30,000 unique bricks and a 1-gigadalton rotationally symmetric tetramer. We also assembled a cuboid that contains around 10,000 bricks and about 20,000 uniquely addressable, 13-base-pair 'voxels' that serves as a molecular canvas for three-dimensional sculpting. Complex, user-prescribed, three-dimensional cavities can be produced within this molecular canvas, enabling the creation of shapes such as letters, a helicoid and a teddy bear. We anticipate that with further optimization of structure design, strand synthesis and assembly procedure even larger structures could be accessible, which could be useful for applications such as positioning functional components.


Asunto(s)
Algoritmos , ADN/química , ADN/síntesis química , Nanoestructuras/química , Nanotecnología , Conformación de Ácido Nucleico , Animales , Tomografía con Microscopio Electrónico , Imagenología Tridimensional , Nucleótidos/química , Rotación , Análisis de Secuencia de ADN , Ursidae
3.
J R Soc Interface ; 12(111): 20150580, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26423437

RESUMEN

Dynamic DNA nanotechnology provides a promising avenue for implementing sophisticated assembly processes, mechanical behaviours, sensing and computation at the nanoscale. However, design of these systems is complex and error-prone, because the need to control the kinetic pathway of a system greatly increases the number of design constraints and possible failure modes for the system. Previous tools have automated some parts of the design workflow, but an integrated solution is lacking. Here, we present software implementing a three 'tier' design process: a high-level visual programming language is used to describe systems, a molecular compiler builds a DNA implementation and nucleotide sequences are generated and optimized. Additionally, our software includes tools for analysing and 'debugging' the designs in silico, and for importing/exporting designs to other commonly used software systems. The software we present is built on many existing pieces of software, but is integrated into a single package­accessible using a Web-based interface at http://molecular-systems.net/workbench. We hope that the deep integration between tools and the flexibility of this design process will lead to better experimental results, fewer experimental design iterations and the development of more complex DNA nanosystems.


Asunto(s)
Biología Computacional/métodos , ADN/química , Nanotecnología/métodos , Automatización , Secuencia de Bases , Simulación por Computador , Bases de Datos Genéticas , Internet , Cinética , Estructura Molecular , Conformación de Ácido Nucleico , Nucleótidos/química , Lenguajes de Programación , Programas Informáticos , Procesos Estocásticos , Termodinámica , Interfaz Usuario-Computador
4.
Nat Commun ; 4: 2275, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24013352

RESUMEN

Using DNA as programmable, sequence-specific 'glues', shape-controlled hydrogel units are self-assembled into prescribed structures. Here we report that aggregates are produced using hydrogel cubes with edge lengths ranging from 30 µm to 1 mm, demonstrating assembly across scales. In a simple one-pot agitation reaction, 25 dimers are constructed in parallel from 50 distinct hydrogel cube species, demonstrating highly multiplexed assembly. Using hydrogel cuboids displaying face-specific DNA glues, diverse structures are achieved in aqueous and in interfacial agitation systems. These include dimers, extended chains and open network structures in an aqueous system, and dimers, chains of fixed length, T-junctions and square shapes in the interfacial system, demonstrating the versatility of the assembly system.


Asunto(s)
ADN/química , Hidrogeles/química , Dimerización , Polietilenglicoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...