Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(3)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38591473

RESUMEN

Thin twin-roll cast strips from a model Al-Cu-Mg-Li-Zr alloy with a small addition of Sc were prepared. A combination of a fast solidification rate and a favorable effect of Sc microalloying refines the grain size and the size of primary phase particles and reduces eutectic cell dimensions to 10-15 µm. Long-term homogenization annealings used in conventionally cast materials lasting several tens of hours followed by a necessary dimension reduction through rolling/extruding could be substituted by energy and material-saving procedure. It consists of two-step short annealings at 300 °C/30 min and 450 °C/30 min, followed by the refinement and hardening of the structure using constrained groove pressing. A dense dispersion of 10-20 nm spherical Al3(Sc,Zr) precipitates intensively forms during this treatment and effectively stabilizes the structure and inhibits the grain growth during subsequent solution treatment at 530 °C/30 min. Small (3%) pre-straining after quenching assures more uniform precipitation of strengthening Al2Cu (θ'), Al2CuMg (S'), and Al2CuLi (T1) particles during subsequent age-hardening annealing at 180 °C/14 h. The material does not contain a directional and anisotropic structure unavoidable in rolled or extruded sheets. The proposed procedure thus represents a model near net shape processing strategy for manufacturing lightweight high-strength sheets for cryogenic applications in aeronautics.

2.
Materials (Basel) ; 14(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34947364

RESUMEN

Aluminium steel clad materials have high potential for industrial applications. Their mechanical properties are governed by an intermetallic layer, which forms upon heat treatment at the Al-Fe interface. Transmission electron microscopy was employed to identify the phases present at the interface by selective area electron diffraction and energy dispersive spectroscopy. Three phases were identified: orthorhombic Al5Fe2, monoclinic Al13Fe4 and cubic Al19Fe4MnSi2. An effective interdiffusion coefficient dependent on concentration was determined according to the Boltzmann-Matano method. The highest value of the interdiffusion coefficient was reached at the composition of the intermetallic phases. Afterwards, the process of diffusion considering the evaluated interdiffusion coefficient was simulated using the finite element method. Results of the simulations revealed that growth of the intermetallic phases proceeds preferentially in the direction of aluminium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...