Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(5)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37242527

RESUMEN

(1) Background: Implant-associated bacterial infections are usually hard to treat conservatively due to the resistance and tolerance of the pathogens to conventional antimicrobial therapy. Bacterial colonization of vascular grafts may lead to life-threatening conditions such as sepsis. The objective of this study is to evaluate whether conventional antibiotics and bacteriophages can reliably prevent the bacterial colonization of vascular grafts. (2) Methods: Gram-positive and Gram-negative bacterial infections were simulated on samples of woven PET gelatin-impregnated grafts using Staphylococcus aureus and Escherichia coli strains, respectively. The ability to prevent colonization was evaluated for a mixture of broad-spectrum antibiotics, for strictly lytic species-specific bacteriophage strains, and for a combination of both. All the antimicrobial agents were conventionally tested in order to prove the sensitivity of the used bacterial strains. Furthermore, the substances were used in a liquid form or in combination with a fibrin glue. (3) Results: Despite their strictly lytic nature, the application of bacteriophages alone was not enough to protect the graft samples from both bacteria. The singular application of antibiotics, both with and without fibrin glue, showed a protective effect against S. aureus (0 CFU/cm2), but was not sufficient against E. coli without fibrin glue (M = 7.18 × 104 CFU/cm2). In contrast, the application of a combination of antibiotics and phages showed complete eradication of both bacteria after a single inoculation. The fibrin glue hydrogel provided an increased protection against repetitive exposure to S. aureus (p = 0.05). (4) Conclusions: The application of antibacterial combinations of antibiotics and bacteriophages is an effective approach to the prevention of bacteria-induced vascular graft infections in clinical settings.

2.
Cryobiology ; 111: 57-69, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37062517

RESUMEN

The importance of cryopreservation in tissue engineering is unceasingly increasing. Preparation, cryopreservation, and storage of tissue-engineered constructs (TECs) at an on-site location offer a convenient way for their clinical application and commercialization. Partial freezing initiated at high sub-zero temperatures using ice-nucleating agents (INAs) has recently been applied in organ cryopreservation. It is anticipated that this freezing technique may be efficient for the preservation of both scaffold mechanical properties and cell viability of TECs. Infrared thermography is an instrumental method to monitor INAs-mediated freezing of various biological entities. In this paper, porous collagen-hydroxyapatite (collagen-HAP) scaffolds were fabricated and characterized as model TECs, whereas infrared thermography was proposed as a method for monitoring the crystallization-related events on their partial freezing down to -25 °C. Intra- and interscaffold latent heat transmission were descriptively evaluated. Nucleation, freezing points as well as the degree of supercooling and duration of crystallization were calculated based on inspection of respective thermographic curves. Special consideration was given to the cryoprotective agent (CPA) composition (Snomax®, crude leaf homogenate (CLH) from Hippophae rhamnoides, dimethyl sulfoxide (Me2SO) and recombinant type-III antifreeze protein (AFP)) and freezing conditions ('in air' or 'in bulk CPA'). For CPAs without ice nucleation activity, thermographic measurements demonstrated that the supercooling was significantly milder in the case of scaffolds present in a CPA solution compared to that without them. This parameter (ΔT, °C) altered with the following tendency: 10 Me2SO (2.90 ± 0.54 ('scaffold in a bulk CPA') vs. 7.71 ± 0.43 ('bulk CPA', P < 0.0001)) and recombinant type-III AFP, 0.5 mg/ml (2.65 ± 0.59 ('scaffold in a bulk CPA') vs. 7.68 ± 0.34 ('bulk CPA', P < 0.0001)). At the same time, in CPA solutions with ice nucleation activity the least degree of supercooling and the longest crystallization duration (Δt, min) for scaffolds frozen 'in air' were documented for CLH from Hippophae rhamnoides (1.57 ± 0.37 °C and 21.86 ± 2.93 min) compared to Snomax, 5 µg/ml (2.14 ± 0.33 °C and 19.91 ± 4.72 min), respectively). Moreover, when frozen 'in air' in CLH from Hippophae rhamnoides, collagen-HAP scaffolds were shown to have the longest ice-liquid equilibrium phase during crystallization and the lowest degree of supercooling followed by alginate core-shell capsules and nanofibrous electrospun fiber mats made of poly ɛ-caprolactone (PCL) and polylactic acid (PLA) (PCL/PLA) blend. The paper offers evidence that infrared thermography provides insightful information for monitoring partial freezing events in TECs when using different freezing containers, CPAs and conditions. This may further TEC-specific cryopreservation with enhanced batch homogeneity and optimization of CPA compositions of natural origin active at warm sub-zero temperatures.


Asunto(s)
Criopreservación , Hielo , Congelación , Criopreservación/métodos , Termografía , Durapatita , alfa-Fetoproteínas , Crioprotectores/química , Colágeno
3.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34768804

RESUMEN

Polyvinylidene fluoride (PVDF) and its copolymer with trifluoroethylene (P(VDF-TrFE)) are considered as promising biomaterials for supporting nerve regeneration because of their proven biocompatibility and piezoelectric properties that could stimulate cell ingrowth due to their electrical activity upon mechanical deformation. For the first time, this study reports on the comparative analysis of PVDF and P(VDF-TrFE) electrospun scaffolds in terms of structural and piezoelectric properties as well as their in vitro performance. A dynamic impact test machine was developed, validated, and utilised, to evaluate the generation of an electrical voltage upon the application of an impact load (varying load magnitude and frequency) onto the electrospun PVDF (15-20 wt%) and P(VDF-TrFE) (10-20 wt%) scaffolds. The cytotoxicity and in vitro performance of the scaffolds was evaluated with neonatal rat (nrSCs) and adult human Schwann cells (ahSCs). The neurite outgrowth behaviour from sensory rat dorsal root ganglion neurons cultured on the scaffolds was analysed qualitatively. The results showed (i) a significant increase of the ß-phase content in the PVDF after electrospinning as well as a zeta potential similar to P(VDF-TrFE), (ii) a non-constant behaviour of the longitudinal piezoelectric strain constant d33, depending on the load and the load frequency, and (iii) biocompatibility with cultured Schwann cells and guiding properties for sensory neurite outgrowth. In summary, the electrospun PVDF-based scaffolds, representing piezoelectric activity, can be considered as promising materials for the development of artificial nerve conduits for the peripheral nerve injury repair.


Asunto(s)
Polímeros de Fluorocarbono/química , Ganglios Espinales/fisiología , Hidrocarburos Fluorados/química , Regeneración Nerviosa , Polivinilos/química , Células de Schwann/fisiología , Andamios del Tejido , Adolescente , Adulto , Animales , Materiales Biocompatibles , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polímeros , Ratas , Adulto Joven
4.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803546

RESUMEN

Alginate as a versatile naturally occurring biomaterial has found widespread use in the biomedical field due to its unique features such as biocompatibility and biodegradability. The ability of its semipermeable hydrogels to provide a favourable microenvironment for clinically relevant cells made alginate encapsulation a leading technology for immunoisolation, 3D culture, cryopreservation as well as cell and drug delivery. The aim of this work is the evaluation of structural properties and swelling behaviour of the core-shell capsules for the encapsulation of multipotent stromal cells (MSCs), their 3D culture and cryopreservation using slow freezing. The cells were encapsulated in core-shell capsules using coaxial electrospraying, cultured for 35 days and cryopreserved. Cell viability, metabolic activity and cell-cell interactions were analysed. Cryopreservation of MSCs-laden core-shell capsules was performed according to parameters pre-selected on cell-free capsules. The results suggest that core-shell capsules produced from the low viscosity high-G alginate are superior to high-M ones in terms of stability during in vitro culture, as well as to solid beads in terms of promoting formation of viable self-assembled cellular structures and maintenance of MSCs functionality on a long-term basis. The application of 0.3 M sucrose demonstrated a beneficial effect on the integrity of capsules and viability of formed 3D cell assemblies, as compared to 10% dimethyl sulfoxide (DMSO) alone. The proposed workflow from the preparation of core-shell capsules with self-assembled cellular structures to the cryopreservation appears to be a promising strategy for their off-the-shelf availability.


Asunto(s)
Alginatos/química , Hidrogeles/química , Andamios del Tejido/química , Animales , Callithrix , Cápsulas , Supervivencia Celular , Criopreservación , Dermis/citología , Humanos , Células Madre Mesenquimatosas/citología , Tamaño de la Partícula , Espectrometría Raman , Factores de Tiempo , Agua/química
5.
J Biomed Mater Res B Appl Biomater ; 109(8): 1198-1215, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33319484

RESUMEN

Human amniotic membrane (hAM) has been employed as scaffolding material in a wide range of tissue engineering applications, especially as a skin dressing and as a graft for corneal treatment, due to the structure of the extracellular matrix and excellent biological properties that enhance both wound healing and tissue regeneration. This review highlights recent work and current knowledge on the application of native hAM, and/or production of hAM-based tissue-engineered products to create scaffolds mimicking the structure of the native membrane to enhance the hAM performance. Moreover, an overview is presented on the available (cryo) preservation techniques for storage of native hAM and tissue-engineered products that are necessary to maintain biological functions such as angiogenesis, anti-inflammation, antifibrotic and antibacterial activity.


Asunto(s)
Amnios/química , Vendajes , Materiales Biocompatibles , Criopreservación , Ingeniería de Tejidos , Andamios del Tejido/química , Cicatrización de Heridas , Materiales Biocompatibles/química , Materiales Biocompatibles/uso terapéutico , Matriz Extracelular/química , Humanos
6.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081128

RESUMEN

Donor platelet transfusion is currently the only efficient treatment of life-threatening thrombocytopenia, but it is highly challenged by immunological, quality, and contamination issues, as well as short shelf life of the donor material. Ex vivo produced megakaryocytes and platelets represent a promising alternative strategy to the conventional platelet transfusion. However, practical implementation of such strategy demands availability of reliable biobanking techniques, which would permit eliminating continuous cell culture maintenance, ensure time for quality testing, enable stock management and logistics, as well as availability in a ready-to-use manner. At the same time, protocols applying DMSO-based cryopreservation media were associated with increased risks of adverse long-term side effects after patient use. Here, we show the possibility to develop cryopreservation techniques for iPSC-derived megakaryocytes under defined xeno-free conditions with significant reduction or complete elimination of DMSO. Comprehensive phenotypic and functional in vitro characterization of megakaryocytes has been performed before and after cryopreservation. Megakaryocytes cryopreserved DMSO-free, or using low DMSO concentrations, showed the capability to produce platelets in vivo after transfusion in a mouse model. These findings propose biobanking approaches essential for development of megakaryocyte-based replacement and regenerative therapies.


Asunto(s)
Conservación de la Sangre/métodos , Criopreservación , Crioprotectores/toxicidad , Dimetilsulfóxido/toxicidad , Megacariocitos/efectos de los fármacos , Animales , Plaquetas/citología , Plaquetas/efectos de los fármacos , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Megacariocitos/citología , Ratones , Ratones SCID
7.
Int J Mol Sci ; 21(11)2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32512889

RESUMEN

For decades, the unique regenerative properties of the human amniotic membrane (hAM) have been successfully utilized in ophthalmology. As a directly applied biomaterial, the hAM should be available in a ready to use manner in clinical settings. However, an extended period of time is obligatory for performing quality and safety tests. Hence, the low temperature storage of the hAM is a virtually inevitable step in the chain from donor retrieval to patient application. At the same time, the impact of subzero temperatures carries an increased risk of irreversible alterations of the structure and composition of biological objects. In the present study, we performed a comprehensive analysis of the hAM as a medicinal product; this is intended for a novel strategy of application in ophthalmology requiring a GMP production protocol including double freezing-thawing cycles. We compared clinically relevant parameters, such as levels of growth factors and extracellular matrix proteins content, morphology, ultrastructure and mechanical properties, before and after one and two freezing cycles. It was found that epidermal growth factor (EGF), transforming growth factor beta 1 (TGF-ß1), hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), hyaluronic acid, and laminin could be detected in all studied conditions without significant differences. Additionally, histological and ultrastructure analysis, as well as transparency and mechanical tests, demonstrated that properties of the hAM required to support therapeutic efficacy in ophthalmology are not impaired by dual freezing.


Asunto(s)
Amnios/química , Amnios/fisiología , Congelación , Oftalmología , Amnios/ultraestructura , Microscopía por Crioelectrón , Criopreservación , Humanos , Fenómenos Mecánicos , Oftalmología/métodos
8.
Cryobiology ; 92: 215-230, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31972153

RESUMEN

Through enabling an efficient supply of cells and tissues in the health sector on demand, cryopreservation is increasingly becoming one of the mainstream technologies in rapid translation and commercialization of regenerative medicine research. Cryopreservation of tissue-engineered constructs (TECs) is an emerging trend that requires the development of practically competitive biobanking technologies. In our previous studies, we demonstrated that conventional slow-freezing using dimethyl sulfoxide (Me2SO) does not provide sufficient protection of mesenchymal stromal cells (MSCs) frozen in 3D collagen-hydroxyapatite scaffolds. After simple modifications to a cryopreservation protocol, we report on significantly improved cryopreservation of TECs. Porous 3D scaffolds were fabricated using freeze-drying of a mineralized collagen suspension and following chemical crosslinking. Amnion-derived MSCs from common marmoset monkey Callithrix jacchus were seeded onto scaffolds in static conditions. Cell-seeded scaffolds were subjected to 24 h pre-treatment with 100 mM sucrose and slow freezing in 10% Me2SO/20% FBS alone or supplemented with 300 mM sucrose. Scaffolds were frozen 'in air' and thawed using a two-step procedure. Diverse analytical methods were used for the interpretation of cryopreservation outcome for both cell-seeded and cell-free scaffolds. In both groups, cells exhibited their typical shape and well-preserved cell-cell and cell-matrix contacts after thawing. Moreover, viability test 24 h post-thaw demonstrated that application of sucrose in the cryoprotective solution preserves a significantly greater portion of sucrose-pretreated cells (more than 80%) in comparison to Me2SO alone (60%). No differences in overall protein structure and porosity of frozen scaffolds were revealed whereas their compressive stress was lower than in the control group. In conclusion, this approach holds promise for the cryopreservation of 'ready-to-use' TECs.


Asunto(s)
Colágeno/farmacología , Criopreservación/métodos , Crioprotectores/farmacología , Durapatita/farmacología , Células Madre Mesenquimatosas/citología , Animales , Bancos de Muestras Biológicas , Callithrix , Supervivencia Celular/efectos de los fármacos , Dimetilsulfóxido/farmacología , Congelación , Sacarosa/farmacología , Ingeniería de Tejidos
9.
Cryobiology ; 91: 104-114, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31593692

RESUMEN

Cryopreservation is the universal technology used to enable long-term storage and continuous availability of cell stocks and tissues for regenerative medicine demands. The main components of standard freezing media are dimethyl sulfoxide (hereinafter Me2SO) and fetal bovine serum (FBS). However, for manufacturing of cells and tissue-engineered products in accordance with the principles of Good Manufacturing Practice (GMP), current considerations in regenerative medicine suggest development of Me2SO- and serum-free biopreservation strategies due to safety concerns over Me2SO-induced side effects and immunogenicity of animal serum. In this work, the effect of electroporation-assisted pre-freeze delivery of sucrose, trehalose and raffinose into human umbilical cord mesenchymal stem cells (hUCMSCs) on their post-thaw survival was investigated. The optimal strength of electric field at 8 pulses with 100 µs duration and 1 Hz pulse repetition frequency was determined to be 1.5 kV/cm from permeabilization (propidium iodide uptake) vs. cell recovery data (resazurin reduction assay). Using sugars as sole cryoprotectants with electroporation, concentration-dependent increase in cell survival was observed. Irrespective of sugar type, the highest cell survival (up to 80%) was achieved at 400 mM extracellular concentration and electroporation. Cell freezing without electroporation yielded significantly lower survival rates. In the optimal scenario, cells were able to attach 24 h after thawing demonstrating characteristic shape and sugar-loaded vacuoles. Application of 10% Me2SO/90% FBS as a positive control provided cell survival exceeding 90%. Next, high glass transition temperatures determined for optimal concentrations of sugars by differential scanning calorimetry (DSC) suggest the possibility to store samples at -80 °C. In summary, using electroporation to incorporate cryoprotective sugars into cells is an effective strategy towards Me2SO- and serum-free cryopreservation and may pave the way for further progress in establishing clinically safe biopreservation strategies for efficient long-term biobanking of cells.


Asunto(s)
Criopreservación/métodos , Crioprotectores/metabolismo , Crioprotectores/farmacología , Dimetilsulfóxido/farmacología , Electroporación/métodos , Células Madre Mesenquimatosas/citología , Animales , Bancos de Muestras Biológicas , Supervivencia Celular/efectos de los fármacos , Congelación , Humanos , Rafinosa/metabolismo , Rafinosa/farmacología , Sacarosa/metabolismo , Sacarosa/farmacología , Ingeniería de Tejidos , Trehalosa/metabolismo , Trehalosa/farmacología , Cordón Umbilical/citología
10.
Int J Artif Organs ; 41(11): 801-810, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30376770

RESUMEN

INTRODUCTION:: This article explores the effect of horizontal and vertical setups on blend electrospinning with two polymers having vastly different properties - poly-ε-caprolactone and gelatin, and subsequent effect of the resulting microstructure on viability of seeded cells. METHODS:: Poly-ε-caprolactone and gelatin of varying blend concentrations were electrospun in horizontal and vertical setup orientations. NIH 3T3 fibroblasts were seeded on these scaffolds to assess cell viability changes in accordance with change in microstructure. RESULTS:: Blend electrospinning yielded a heterogeneous microstructure in the vertical orientation beyond a critical concentration of gelatin, and a homogeneous microstructure in the horizontal orientation. Unblended poly-ε-caprolactone electrospinning showed no significant difference in fibre diameter or pore size in either orientation. Mechanical testing showed reduced elasticity when poly-ε-caprolactone is blended with gelatin but an overall increase in tensile strength in the vertically spun samples. Cells on vertically spun samples showed significantly higher viabilities by day 7. DISCUSSION:: The composite microstructure obtained in vertically spun poly-ε-caprolactone -gelatin blends has a positive effect on viability of seeded cells. Such scaffolds can be considered suitable candidates for cardiovascular tissue engineering where cell infiltration is crucial.


Asunto(s)
Caproatos/química , Lactonas/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Células 3T3 , Animales , Proliferación Celular , Supervivencia Celular , Fibroblastos , Gelatina/química , Ratones , Poliésteres/química , Polímeros , Resistencia a la Tracción
11.
Int J Artif Organs ; 41(11): 811-822, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29976127

RESUMEN

Polyvinylidene fluoride and its co-polymer with trifluoroethylene are promising biomaterials for supporting nerve regeneration processes because of their proven biocompatibility and piezoelectric properties that could stimulate cell ingrowth due to electrical activity upon mechanical deformation. This study reports the piezoelectric effect of electrospun polyvinylidene fluoride scaffolds in response to mechanical loading. An impact test machine was used to evaluate the generation of electrical voltage upon application of an impact load. Scaffolds were produced via electrospinning from polyvinylidene fluoride and polyvinylidene fluoride-co-trifluoroethylene with concentrations of 10-20 wt% dissolved in N,N-dimethylformamide (DMF) and acetone (6:4). The structural and thermal properties of scaffolds were analyzed using Fourier Transform Infrared Spectroscopy and Differential Scanning Calorimetry, respectively. The piezoelectric response of the scaffolds was induced using a custom-made manual impact press machine. Impact forces between 0.4 and 14 N were applied. Fourier Transform Infrared Spectroscopy and Differential Scanning Calorimetry results demonstrated the piezoelectric effect of the electrospun polyvinylidene fluoride and polyvinylidene fluoride-co-trifluoroethylene scaffolds. All the scaffolds exhibited a piezoelectric polar beta-phase formation. Their thermal enthalpies were higher than the value of the initial materials and exhibited a better tendency of crystallization. The electrospun scaffolds exhibited piezoelectric responses in form of voltage by applying impact load. Polyvinylidene fluoride-co-trifluoroethylene scaffolds showed higher values in the range of 6-30 V as compared to pure polyvinylidene fluoride. Here, the mechanically induced electrical impulses measured were between 2.5 and 8 V. Increasing the impact forces did not increase the piezoelectric effect. The results demonstrate the possibility of producing electrospun polyvinylidene fluoride and polyvinylidene fluoride-co-trifluoroethylene scaffolds as nerve guidance with piezoelectric response. Further experiments must be carried out to analyze the piezoelectricity at dynamic conditions.


Asunto(s)
Materiales Biocompatibles/química , Hidrocarburos Fluorados/química , Regeneración Nerviosa/fisiología , Polivinilos/química , Andamios del Tejido/química , Nanofibras , Polímeros/química , Espectroscopía Infrarroja por Transformada de Fourier
12.
Int J Biol Macromol ; 104(Pt B): 1955-1965, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28365291

RESUMEN

The extraordinary biocompatibility and mechanical properties of chitinous scaffolds from marine sponges endows these structures with unique properties that render them ideal for diverse biomedical applications. In the present work, a technological route to produce "ready-to-use" tissue-engineered products based on poriferan chitin is comprehensively investigated for the first time. Three key stages included isolation of scaffolds from the marine demosponge Ianthella basta, confirmation of their biocompatibility with human mesenchymal stromal cells, and cryopreservation of the tissue-like structures grown within these scaffolds using a slow cooling protocol. Biocompatibility of the macroporous, flat chitin scaffolds has been confirmed by cell attachment, high cell viability and the ability to differentiate into the adipogenic lineage. The viability of cells cryopreserved on chitin scaffolds was reduced by about 30% as compared to cells cryopreserved in suspension. However, the surviving cells were able to retain their differentiation potential; and this is demonstrated for the adipogenic lineage. The results suggest that chitin from the marine demosponge I. basta is a promising, highly biocompatible biomaterial for stem cell-based tissue-engineering applications.


Asunto(s)
Materiales Biocompatibles , Quitina , Células Madre Mesenquimatosas/citología , Poríferos , Ingeniería de Tejidos , Andamios del Tejido , Adipogénesis , Animales , Materiales Biocompatibles/química , Diferenciación Celular , Quitina/química , Criopreservación , Humanos , Ensayo de Materiales , Poríferos/química , Espectroscopía Infrarroja por Transformada de Fourier , Ingeniería de Tejidos/métodos
13.
Mater Sci Eng C Mater Biol Appl ; 68: 143-152, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27524006

RESUMEN

Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application.


Asunto(s)
Sustitutos de Huesos , Cerámica , Materiales Biocompatibles Revestidos , Implantes Experimentales , Ensayo de Materiales , Siliconas , Animales , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Cerámica/química , Cerámica/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Durapatita/química , Durapatita/farmacología , Ratones , Células 3T3 NIH , Siliconas/química , Siliconas/farmacología , Circonio/química , Circonio/farmacología
14.
Cryobiology ; 71(1): 103-11, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25980899

RESUMEN

Multipotent stromal cells derived from the common marmoset monkey Callithrix jacchus (cjMSCs) possess high phylogenetic similarity to humans, with a great potential for preclinical studies in the field of regenerative medicine. Safe and effective long-term storage of cells is of great significance to clinical and research applications. Encapsulation of such cell types within alginate beads that can mimic an extra-cellular matrix and provide a supportive environment for cells during cryopreservation, has several advantages over freezing of cells in suspension. In this study we have analysed the effect of dimethyl sulfoxide (Me2SO, 2.5-10%, v/v) and pre-freeze loading time of alginate encapsulated cjMSCs in Me2SO (0-45 min) on the viability and metabolic activity of the cells after freezing using a slow cooling rate (-1°C/min). It was found that these parameters affect the stability and homogeneity of alginate beads after thawing. Moreover, the cjMSCs can be frozen in alginate beads with lower Me2SO concentration of 7.5% after 30 min of loading, while retaining high cryopreservation outcome. We demonstrated the maximum viability, membrane integrity and metabolic activity of the cells under optimized, less cytotoxic conditions. The results of this study are another step forward towards the application of cryopreservation for the long-term storage and subsequent applications of transplants in cell-based therapies.


Asunto(s)
Criopreservación/métodos , Células Madre Mesenquimatosas/fisiología , Células Madre Multipotentes/fisiología , Alginatos/farmacología , Animales , Callithrix/fisiología , Supervivencia Celular/efectos de los fármacos , Dimetilsulfóxido/farmacología , Congelación , Ácido Glucurónico/farmacología , Ácidos Hexurónicos/farmacología , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Multipotentes/citología , Células Madre Multipotentes/efectos de los fármacos , Filogenia
15.
PLoS One ; 9(9): e107911, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25259731

RESUMEN

Alginate cell-based therapy requires further development focused on clinical application. To assess engraftment, risk of mutations and therapeutic benefit studies should be performed in an appropriate non-human primate model, such as the common marmoset (Callithrix jacchus). In this work we encapsulated amnion derived multipotent stromal cells (MSCs) from Callithrix jacchus in defined size alginate beads using a high voltage technique. Our results indicate that i) alginate-cell mixing procedure and cell concentration do not affect the diameter of alginate beads, ii) encapsulation of high cell numbers (up to 10×106 cells/ml) can be performed in alginate beads utilizing high voltage and iii) high voltage (15-30 kV) does not alter the viability, proliferation and differentiation capacity of MSCs post-encapsulation compared with alginate encapsulated cells produced by the traditional air-flow method. The consistent results were obtained over the period of 7 days of encapsulated MSCs culture and after cryopreservation utilizing a slow cooling procedure (1 K/min). The results of this work show that high voltage encapsulation can further be maximized to develop cell-based therapies with alginate beads in a non-human primate model towards human application.


Asunto(s)
Alginatos , Técnicas de Cultivo de Célula , Tratamiento Basado en Trasplante de Células y Tejidos , Criopreservación , Células Madre Mesenquimatosas/citología , Animales , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Ácido Glucurónico , Ácidos Hexurónicos , Inmunofenotipificación , Células Madre Mesenquimatosas/metabolismo , Fenotipo , Primates
16.
Mater Sci Eng C Mater Biol Appl ; 36: 77-83, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24433889

RESUMEN

Encapsulation of stem cells in alginate beads is promising as a sophisticated drug delivery system in treatment of a wide range of acute and chronic diseases. However, common use of air flow encapsulation of cells in alginate beads fails to produce beads with narrow size distribution, intact spherical structure and controllable sizes that can be scaled up. Here we show that high voltage encapsulation (≥ 15 kV) can be used to reproducibly generate spherical alginate beads (200-400 µm) with narrow size distribution (± 5-7%) in a controlled manner under optimized process parameters. Flow rate of alginate solution ranged from 0.5 to 10 ml/h allowed producing alginate beads with a size of 320 and 350 µm respectively, suggesting that this approach can be scaled up. Moreover, we found that applied voltages (15-25 kV) did not alter the viability and proliferation of encapsulated mesenchymal stem cells post-encapsulation and cryopreservation as compared to air flow. We are the first who employed a comparative analysis of electro-spraying and air flow encapsulation to study the effect of high voltage on alginate encapsulated cells. This report provides background in application of high voltage to encapsulate living cells for further medical purposes. Long-term comparison and work on alginate-cell interaction within these structures will be forthcoming.


Asunto(s)
Alginatos/farmacología , Técnicas de Cultivo de Célula/métodos , Electricidad , Células Madre Mesenquimatosas/citología , Animales , Callithrix , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Inmovilizadas/citología , Células Inmovilizadas/efectos de los fármacos , Reactivos de Enlaces Cruzados/química , Criopreservación , Ácido Glucurónico/farmacología , Ácidos Hexurónicos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Microesferas , Tamaño de la Partícula , Reología/efectos de los fármacos , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...