Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 13897, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554887

RESUMEN

Normothermic machine perfusion (NMP) of kidney grafts is a promising new preservation method to improve graft quality and clinical outcome. Routinely, kidneys are washed out of blood remnants and cooled using organ preservation solutions prior to NMP. Here we assessed the effect of cold preflush compared to direct NMP. After 30 min of warm ischemia, porcine kidneys were either preflushed with cold histidine-tryptophan-ketoglutarate solution (PFNMP group) prior to NMP or directly subjected to NMP (DNMP group) using a blood/buffer solution. NMP was performed at a perfusion pressure of 75 mmHg for 6 h. Functional parameters were assessed as well as histopathological and biochemical analyses. Renal function as expressed by creatinine clearance, fractional excretion of sodium and total output of urine was inferior in PFNMP. Urine protein and neutrophil gelatinase-associated lipocalin (NGAL) concentrations as markers for kidney damage were significantly higher in the PFNMP group. Additionally, increased osmotic nephropathy was found after PFNMP. This study demonstrated that cold preflush prior to NMP aggravates ischemia reperfusion injury in comparison to direct NMP of warm ischemia-damaged kidney grafts. With increasing use of NMP systems for kidneys and other organs, further research into graft flushing during retrieval is warranted.


Asunto(s)
Riñón/metabolismo , Soluciones Preservantes de Órganos/metabolismo , Daño por Reperfusión/metabolismo , Animales , Femenino , Glucosa/metabolismo , Trasplante de Riñón/métodos , Lipocalina 2/metabolismo , Manitol/metabolismo , Modelos Animales , Preservación de Órganos/métodos , Perfusión/métodos , Cloruro de Potasio/metabolismo , Procaína/metabolismo , Porcinos , Isquemia Tibia/métodos
2.
Nutrients ; 11(8)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374900

RESUMEN

Systemic and localized ischemia and reperfusion injury remain clinically relevant issues after organ transplantation and contribute to organ dysfunctions, among which acute kidney injury is one of the most common. An in vitro test-circuit for normothermic perfusion of porcine kidneys after warm ischemia was used to investigate the antioxidant properties of vitamin C during reperfusion. Vitamin C is known to enhance microcirculation, reduce endothelial permeability, prevent apoptosis, and reduce inflammatory reactions. Based on current evidence about the pleiotropic effects of vitamin C, we hypothesize that the antioxidant properties of vitamin C might provide organ-protection and improve the kidney graft function in this model of ischemia and reperfusion. METHODS: 10 porcine kidneys from 5 Landrace pigs were perfused in vitro for 6 h. For each experiment, both kidneys of one animal were perfused simultaneously with a 1:1 mixture of autologous blood and modified Ringer's solution at 38 °C and 75 mmHg continuous perfusion pressure. One kidney was treated with a 500 mg bolus injection of vitamin C into the perfusate, followed by continuous infusion of 60 mg/h vitamin C. In the control test circuit, an equal volume of Ringer's solution was administered as a placebo. Perfusate samples were withdrawn at distinct points in time during 6 h of perfusion for blood gas analyses as well as measurement of serum chemistry, oxidative stress and antioxidant capacity. Hemodynamic parameters and urine excretion were monitored continuously. Histological samples were analyzed to detect tubular- and glomerular-injury. RESULTS: vitamin C administration to the perfusate significantly reduced oxidative stress (49.8 ± 16.2 vs. 118.6 ± 23.1 mV; p = 0.002) after 6 h perfusion, and increased the antioxidant capacity, leading to red blood cell protection and increased hemoglobin concentrations (5.1 ± 0.2 vs. 3.9 ± 0.6 g/dL; p = 0.02) in contrast to placebo treatment. Kidney function was not different between the groups (creatinine clearance vit C: 2.5 ± 2.1 vs. placebo: 0.5 ± 0.2 mL/min/100 g; p = 0.9). Hypernatremia (187.8 ± 4.7 vs. 176.4 ± 5.7 mmol/L; p = 0.03), and a lower, but not significant decreased fractional sodium excretion (7.9 ± 2 vs. 27.7 ± 15.3%; p = 0.2) were observed in the vitamin C group. Histological analysis did not show differences in tubular- and glomerular injury between the groups. CONCLUSION: Vitamin C treatment increased the antioxidant capacity of in vitro perfused kidney grafts, reduced oxidative stress, preserved red blood cells as oxygen carrier in the perfusate, but did not improve clinically relevant parameters like kidney function or attenuate kidney damage. Nevertheless, due to its antioxidative properties vitamin C might be a beneficial supplement to clinical kidney graft perfusion protocols.


Asunto(s)
Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Riñón/efectos de los fármacos , Preservación de Órganos , Estrés Oxidativo/efectos de los fármacos , Perfusión , Daño por Reperfusión/prevención & control , Animales , Citocinas/metabolismo , Femenino , Hemoglobinas/metabolismo , Técnicas In Vitro , Riñón/metabolismo , Riñón/patología , Preservación de Órganos/efectos adversos , Perfusión/efectos adversos , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Sus scrofa
3.
Interact Cardiovasc Thorac Surg ; 28(1): 120-127, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010987

RESUMEN

OBJECTIVES: The first aim was the development of a human blood miniature mock-loop system consisting of 2 identical extracorporeal circuits, which enable systematic head-to-head comparisons of test substances. In a second step, we evaluated the suitability of the mock-loop system, by comparing 2 different brands of heparin (ROTEXMEDICA vs B.BRAUN), which have showed different anticoagulation capacities in the clinic. METHODS: For 1 experiment (18 in total), blood of the same healthy human donor was divided into 2 portions (2 × 50 ml), heparinized with 37.5 IU⋅ml-1 of the competing test substances and diluted to a haematocrit value of 20-25%. Each mock loop was filled with 70 ml, and in vivo heparin degradation was simulated in 3 different groups by protamine application, representing 0%, 50% and 100% heparin antagonization. At baseline, 5, 60, 120, 240 and 360 min, blood samples were taken to perform thromboelastometry, flow cytometry, haemolysis and general haemostasis analysis. RESULTS: Blood pressure, blood flow and blood temperature within the loops remained stable for 6 h in all groups. After 6 h, in the 100% antagonized ROTEXMEDICA heparin group, significantly increased haemolysis (148.7 ± 80 mg⋅dl-1 vs 57.5 ± 15.8 mg⋅dl-1), activated platelets (8 ± 3.8% vs 3.3 ± 0.7%), D-dimers (7376 ± 7144 ng ml-1 vs 576.2 ± 190 ng ml-1) and fulminant blood clots were detected. CONCLUSIONS: Our in vitro system is suitable for the detection of reduced anticoagulation capacity of a test drug, which was reported in vivo previously.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Heparina/farmacología , Terapia Trombolítica/métodos , Trombosis/tratamiento farmacológico , Anticoagulantes/farmacología , Hematócrito , Humanos , Recuperación de Sangre Operatoria , Tromboelastografía , Trombosis/sangre
4.
J Thorac Cardiovasc Surg ; 157(2): 591-599.e4, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30414772

RESUMEN

OBJECTIVES: Shear stress from left ventricular assist devices induces von Willebrand factor degradation and platelet dysfunction, leading to nonsurgical bleeding. We characterized the hemostatic changes induced by 2 centrifugal left ventricular assist devices, the HeartMate 3 (Abbott Inc, Chicago, Ill) and the EVAHEART (Evaheart Inc, Houston, Tex), for comparison. METHODS: Whole blood from 8 healthy volunteers was used ex vivo. Blood from the same donor was used for 6 hours of circulation in a miniature mock-loop system consisting of 2 identical extracorporeal circuits to compare the following experimental settings: (1) optimal revolutions per minute (rpm) for the HeartMate 3 (n = 4; 5000 rpm) and the EVAHEART (n = 4; 2500 rpm) and (2) equal rpm (3000 rpm for the HeartMate 3 and EVAHEART, n = 4 vs n = 4). For both settings, blood flow was adjusted to 1 mock-loop filling volume per minute (HeartMate 3 = 82 mL/min, EVAHEART = 100 mL/min). A panel of coagulation markers was analyzed to investigate hemostatic changes. RESULTS: The free plasma hemoglobin concentration was significantly lower in the EVAHEART compared with the HeartMate 3 after 6 hours of mock-loop circulation under both settings (optimal: 37 ± 31 vs 503 ± 173 mg/dL, P < .0001; equal: 27 ± 4 vs 139 ± 135 mg/dL, P = .024). Loss of von Willebrand factor high-molecular-weight multimers occurred in both left ventricular assist devices and settings, but the von Willebrand factor:activity/von Willebrand factor:antigen ratio after 6 hours was significantly lower in optimal settings for the HeartMate 3 (P = .009). The thrombin-antithrombin complex level was significantly lower with the EVAHEART for both settings (P < .0001). CONCLUSIONS: The EVAHEART left ventricular assist device caused less hemolysis, resulted in lower coagulation activation, and provided better preservation of von Willebrand factor functional activity compared with the HeartMate 3 device. These findings prove that left ventricular assist device design plays a major role in minimizing blood damage during left ventricular assist device support.


Asunto(s)
Coagulación Sanguínea , Corazón Auxiliar/efectos adversos , Hemólisis , Hemorragia/etiología , Diseño de Prótesis , Función Ventricular Izquierda , Antitrombina III , Biomarcadores/sangre , Hemoglobinas/metabolismo , Hemorragia/sangre , Humanos , Ensayo de Materiales , Péptido Hidrolasas/sangre , Activación Plaquetaria , Estrés Mecánico , Factores de Tiempo , Factor de von Willebrand/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...