Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 274, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448454

RESUMEN

Forest biomass is an essential resource in relation to the green transition and its assessment is key for the sustainable management of forest resources. Here, we present a forest biomass dataset for Europe based on the best available inventory and satellite data, with a higher level of harmonisation and spatial resolution than other existing data. This database provides statistics and maps of the forest area, biomass stock and their share available for wood supply in the year 2020, and statistics on gross and net volume increment in 2010-2020, for 38 European countries. The statistics of most countries are available at a sub-national scale and are derived from National Forest Inventory data, harmonised using common reference definitions and estimation methodology, and updated to a common year using a modelling approach. For those counties without harmonised statistics, data were derived from the State of Europe's Forest 2020 Report at the national scale. The maps are coherent with the statistics and depict the spatial distribution of the forest variables at 100 m resolution.


Asunto(s)
Bosques , Madera , Biomasa , Bases de Datos Factuales , Europa (Continente)
2.
J Environ Manage ; 345: 118728, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37536130

RESUMEN

Environmental and socio-economic developments induce land-use changes with potentially negative impacts on human well-being. To counteract undesired developments, a profound understanding of the complex relationships between drivers, land use, and ecosystem services is needed. Yet, national studies examining extended time periods are still rare. Based on the Special Report on land use, land management and climate change by the Austrian Panel on Climate Change (APCC), we use the Driver-Pressure-State-Impact-Response (DPSIR) framework to (1) identify the main drivers of land-use change, (2) describe past and future land-use changes in Austria between 1950 and 2100, (3) report related impacts on ecosystem services, and (4) discuss management responses. Our findings indicate that socio-economic drivers (e.g., economic growth, political systems, and technological developments) have influenced past land-use changes the most. The intensification of agricultural land use and urban sprawl have primarily led to declining ecosystem services in the lowlands. In mountain regions, the abandonment of mountain grassland has prompted a shift from provisioning to regulating services. However, simulations indicate that accelerating climate change will surpass socio-economic drivers in significance towards the end of this century, particularly in intensively used agricultural areas. Although climate change-induced impacts on ecosystem services remain uncertain, it can be expected that the range of land-use management options will be restricted in the future. Consequently, policymaking should prioritize the development of integrated land-use planning to safeguard ecosystem services, accounting for future environmental and socio-economic uncertainties.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Austria , Agricultura , Cambio Climático
3.
J Appl Ecol ; 60(4): 696-713, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504807

RESUMEN

Standing deadwood is an important structural component of forest ecosystems. Its occurrence and dynamics influence both carbon fluxes and the availability of habitats for many species. However, deadwood is greatly reduced in managed, and even in many currently unmanaged temperate forests in Europe. To date, few studies have examined how environmental factors, forest management and changing climate affect the availability of standing deadwood and its dynamics.Data from five periods of the Austrian National Forest Inventory (1981-2009) were used to (I) analyse standing deadwood volume in relation to living volume stock, elevation, eco-region, forest type, ownership and management intensity, (II) investigate the influence of forest ownership and management intensity on snag persistence and (III) define drivers of standing deadwood volume loss for seven tree genera (Abies, Alnus, Fagus, Larix, Picea, Pinus and Quercus) using tree-related, site-related and climate-related variables, and predict volume loss under two climate change scenarios.Standing deadwood volume was mainly determined by living volume stock and elevation, resulting in different distributions between eco-regions. While forest type and management intensity influenced standing deadwood volume only slightly, the latter exhibited a significant effect on persistence. Snag persistence was shorter in intensively managed forests than in extensively managed forests and shorter in private than in public forests.Standing deadwood volume loss was driven by a combination of diameter at breast height, elevation, as well as temperature, precipitation and relative humidity. Volume loss under climate change predictions revealed constant rates for moderate climate change (RCP2.6) by the end of the 21st century. Under severe climate change conditions (RCP8.5), volume loss increased for most tree genera, with Quercus, Alnus and Picea showing different predictions depending on the model used as the baseline scenario. We observed trends towards faster volume loss at higher temperatures and lower elevations and slower volume loss at high precipitation levels. The tree genera most susceptible to climate change were Pinus and Fagus, while Abies was least susceptible. Synthesis and applications. We recommend to protect standing dead trees from regular harvesting to ensure the full decomposition process. The consequences for decomposition-dependent species must be taken into account to evaluate the influences of management and climate change on standing deadwood dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA