Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(3): 1642-1651, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38198689

RESUMEN

Advanced energetic materials (EMs) play a crucial role in the advancement of microenergetic systems as actuation parts, igniters, propulsion units, and power. The sustainable electrosynthesis of EMs has gained momentum and achieved substantial improvements in the past decade. This study presents the facile synthesis of a new type of high-performance CuN3@CuCl hybrids via a co-electrodeposition methodology utilizing porous Cu as the sacrificial template. The composition, morphology, and energetic characteristics of the CuN3@CuCl hybrids can be easily tuned by adjusting the deposition times. The resulting hybrids demonstrate remarkable energy output (1120 J·g-1) and good laser-induced initiating ability. As compared with porous CuN3, the uniform doping of inert CuCl enhances the electrostatic safety of the hybridized material without compromising its overall energetic characteristics. Notably, the special oxidizing behavior of CuCl gradually lowers the susceptibility of the hybrid material to laser and electrostatic stimulation. This has significant implications for the passivation or self-destruction of highly sensitive EMs. Overall, this study pioneers a new path for the development of MEMS-compatible EMs, facilitating further microenergetic applications.

2.
Inorg Chem ; 61(48): 19379-19387, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36394920

RESUMEN

The development of green primary explosives has become a "holy grail" of energetic materials research. Cu-based 5-nitrotetrazolate is considered one of the most promising candidates due to its excellent blasting power and environmentally benign nature. However, synthesizing Cu-based 5-nitrotetrazolate controllably and securely remains highly challenging. Herein, room-temperature anodization of metallic Cu and a Cu(I)-imidazole nanowire array on copper substrates in a sodium 5-nitrotetrazolate electrolyte leads to in situ electrosynthesis of Cu(I) 5-nitrotetrazolate (DBX-1, CuNT) and its analogue, Cu(II) 5-nitrotetrazolate [Cu(NT)2], respectively. Both obtained CuNT and Cu(NT)2 films demonstrate remarkable energy output and good laser-induced ignition performance. The thermal stability (Tp = 291 °C) and electrostatic safety (E50 = 2.54 mJ) of CuNT proved to be superior to those of Cu(NT)2 (Tp = 257 °C, and E50 = 0.57 mJ). Remarkably, this study provides an exciting new method for the rational design and development of Cu-based 5-nitrotetrazolate as a primary explosive for advanced initiating applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...