Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52
1.
Stem Cell Res Ther ; 15(1): 157, 2024 May 31.
Article En | MEDLINE | ID: mdl-38816774

Mitochondrial transplantation and transfer are being explored as therapeutic options in acute and chronic diseases to restore cellular function in injured tissues. To limit potential immune responses and rejection of donor mitochondria, current clinical applications have focused on delivery of autologous mitochondria. We recently convened a Mitochondrial Transplant Convergent Working Group (CWG), to explore three key issues that limit clinical translation: (1) storage of mitochondria, (2) biomaterials to enhance mitochondrial uptake, and (3) dynamic models to mimic the complex recipient tissue environment. In this review, we present a summary of CWG conclusions related to these three issues and provide an overview of pre-clinical studies aimed at building a more robust toolkit for translational trials.


Mitochondria , Humans , Mitochondria/metabolism , Animals , Acute Disease , Translational Research, Biomedical/methods , Mitochondrial Replacement Therapy/methods
2.
J Mater Chem B ; 11(42): 10121-10130, 2023 11 01.
Article En | MEDLINE | ID: mdl-37824091

Nanoparticle-based drug delivery systems have shown increasing popularity as a means to improve patient outcomes by improving the effectiveness of active pharmaceutical ingredients (APIs). Similarly, nanoparticles have shown success in targeting alternative routes of API administration, such as applying mucoadhesion or mucopenetration to mucosal drug delivery to enhance uptake. While there are many promising examples of mucoadhesive nanomedicines in literature, there are also many examples of contradictory mucoadhesive binding behavior, most prominently in cases using the same nanoparticle materials. We have uncovered mechanistic insights in polymer-protein binding systems using nOe transfer-based NMR and sought to leverage them to explore nanoparticle-protein interactions. We tested several polymer-coated nanoparticles and micellar polymer nanoparticles and evaluated their binding with mucin proteins. We uncovered that the composition and interaction intimacy of polymer moieties that promote mucin binding change when the polymers are incorporated onto nanoparticle surfaces compared to polymer in solution. This change from solution state to nanoparticle coating can enable switching of behavior of these materials from inert to binding, as we observed in polyvinyl pyrrolidone. We also found the nanoparticle core was influential in determining the binding fate of polymer materials, whereas the nanoparticle size did not possess a clear correlation in the ranges we tested (60-270 nm). These experiments demonstrate that identical polymers may switch their binding behavior to mucin as a function of conformational changes that are induced by incorporating the polymers onto the surface of nanoparticles. These NMR-derived insights could be further leveraged to optimize nanoparticle formulations and guide polymer-mediated mucoadhesion.


Nanoparticles , Polymers , Humans , Polymers/chemistry , Protein Binding , Proteins/metabolism , Magnetic Resonance Spectroscopy , Mucins/chemistry , Nanoparticles/chemistry
3.
J Am Chem Soc ; 144(42): 19417-19429, 2022 10 26.
Article En | MEDLINE | ID: mdl-36226909

Crystals are known to grow nonclassically or via four classical modes (the layer-by-layer, dislocation-driven, dendritic, and normal modes, which generally involve minimal interfacet surface diffusion). The field of nanoscience considers this framework to interpret how nanocrystals grow; yet, the growth of many anisotropic nanocrystals remains enigmatic, suggesting that the framework may be incomplete. Here, we study the solution-phase growth of pentatwinned Au nanorods without Br, Ag, or surfactants. Lower supersaturation conditions favored anisotropic growth, which appeared at variance with the known modes. Temporal electron microscopy revealed kinetically limited adatom funneling, as adatoms diffused asymmetrically along the vicinal facets (situated inbetween the {100} side-facets and {111} end-facets) of our nanorods. These vicinal facets were perpetuated throughout the synthesis and, especially at lower supersaturation, facilitated {100}-to-vicinal-to-{111} adatom diffusion. We derived a growth model from classical theory in view of our findings, which showed that our experimental growth kinetics were consistent with nanorods growing via two modes simultaneously: radial growth occurred via the layer-by-layer mode on {100} side-facets, whereas the asymmetric interfacet diffusion of adatoms to {111} end-facets mediated longitudinal growth. Thus, shape anisotropy was not driven by modulating the relative rates of monomer deposition on different facets, as conventionally thought, but rather by modulating the relative rates of monomer integration via interfacet diffusion. This work shows how controlling supersaturation, a thermodynamic parameter, can uncover distinct kinetic phenomena on nanocrystals, such as asymmetric interfacet surface diffusion and a fundamental growth mode for which monomer deposition and integration occur on different facets.


Metal Nanoparticles , Nanotubes , Metal Nanoparticles/chemistry , Nanotubes/chemistry , Anisotropy , Kinetics , Surface-Active Agents
4.
J Contam Hydrol ; 249: 104046, 2022 08.
Article En | MEDLINE | ID: mdl-35785549

The effectiveness of most in situ remedial technologies, including nanoremediation, lies on successful delivery of reagents to a subsurface target treatment zone. Targeted delivery of engineered nanoparticles (NPs) to treat petroleum hydrocarbons present in the unsaturated zone requires an understanding of their transport behaviour in these systems. A series of column experiments explored the effect of initial water saturation, flowrate, input dosage, and porous medium texture on the transport of iron oxide or cobalt ferrite NPs coated with an amphiphilic co-polymer, as well as their targeted attachment to a crude oil zone. As the initial water content increased with a concomitant reduction in air saturation, the degree of tailing present in the NP breakthrough curves (BTCs) reduced, and the mass of NPs recovered increased. Air saturation is positively correlated with the magnitude of air-water interfaces, which provide additional NP retention sites. At a lower injection flow rate, NP retention increased due to a longer residence time and comparatively high air saturation. NP transport behaviour was not sensitive to NP injection dose over the range tested. Increased retention and retardation of the NP BTC was observed in sediments with a higher clay and silt content. NPs coated with a lower concentration of a Pluronic block co-polymer to promote binding were preferentially retained within the crude oil zone. To simulate the asymmetrical NP breakthrough curves observed from the unsaturated systems required the use of a model that accounted for both mobile and immobile flow regions as well as NP attachment and detachment with nonlinear Langmuirian blocking. This model allowed examination of attachment and detachment rate coefficients which captured NP interaction with the porous medium and/or crude oil. It was found that the initial water saturation and flow rate did not have an appreciable impact on the NP attachment rate coefficient, while it increased by ~10× with increasing clay and silt content, and by ~100× in the presence of crude oil, indicating preferential NP attachment within the crude oil zone. As a result of the lower NP polymer concentration coating used to promote increased attachment to crude oil, higher retention was observed near the column inlet and was captured quantitatively by adding a depth-dependent straining term to the model. This retention behaviour represents a combination of irreversible attachment at the air-water interfaces and straining near the column inlet enhanced by the formation of NP aggregates. The detachment rate coefficient decreased with a lower initial water saturation and flowrate, but increased with higher clay and silt content. The findings from this study contribute to our understanding of the transport and binding behaviour of Pluronic-coated NPs in unsaturated conditions and, in particular, the role of initial water content, flowrate and porous medium texture. Demonstrated delivery of NPs to a target zone is an important step towards expanding the utility of NPs as treatment reagents.


Nanoparticles , Petroleum , Clay , Nanoparticles/chemistry , Poloxamer , Polymers , Porosity , Water
5.
ACS Biomater Sci Eng ; 8(4): 1396-1426, 2022 04 11.
Article En | MEDLINE | ID: mdl-35294187

Mucus is a complex viscoelastic gel and acts as a barrier covering much of the soft tissue in the human body. High vascularization and accessibility have motivated drug delivery to various mucosal surfaces; however, these benefits are hindered by the mucus layer. To overcome the mucus barrier, many nanomedicines have been developed, with the goal of improving the efficacy and bioavailability of drug payloads. Two major nanoparticle-based strategies have emerged to facilitate mucosal drug delivery, namely, mucoadhesion and mucopenetration. Generally, mucoadhesive nanoparticles promote interactions with mucus for immobilization and sustained drug release, whereas mucopenetrating nanoparticles diffuse through the mucus and enhance drug uptake. The choice of strategy depends on many factors pertaining to the structural and compositional characteristics of the target mucus and mucosa. While there have been promising results in preclinical studies, mucus-nanoparticle interactions remain poorly understood, thus limiting effective clinical translation. This article reviews nanomedicines designed with mucoadhesive or mucopenetrating properties for mucosal delivery, explores the influence of site-dependent physiological variation among mucosal surfaces on efficacy, transport, and bioavailability, and discusses the techniques and models used to investigate mucus-nanoparticle interactions. The effects of non-homeostatic perturbations on protein corona formation, mucus composition, and nanoparticle performance are discussed in the context of mucosal delivery. The complexity of the mucosal barrier necessitates consideration of the interplay between nanoparticle design, tissue-specific differences in mucus structure and composition, and homeostatic or disease-related changes to the mucus barrier to develop effective nanomedicines for mucosal delivery.


Drug Delivery Systems , Nanoparticles , Humans , Mucous Membrane/metabolism , Mucus/chemistry , Mucus/metabolism , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism
6.
Nanoscale Horiz ; 7(4): 376-384, 2022 03 28.
Article En | MEDLINE | ID: mdl-35075470

Supersaturation is the fundamental parameter driving crystal formation, yet its dynamics in the growth of colloidal nanocrystals (NCs) remain poorly understood. Here, we demonstrate an approach to characterize supersaturation during classical NC growth. We develop a framework that relates noninvasive measurements of the temporal, size-dependent optical properties of growing NCs to the supersaturation dynamics underlying their growth. Using this approach, we investigate the seed-mediated growth of colloidal Au nanocubes, identifying a triphasic sequence of supersaturation dynamics: rapid monomer consumption, sustained supersaturation, and then gradual monomer depletion. These NCs undergo different shape evolutions in different phases of the supersaturation dynamics. As shown with the Au nanocubes, elucidated supersaturation profiles enable the prediction of growth profiles of NCs. We then apply these insights to rationally modulate NC shape evolutions, decreasing the yield of impurity products. Our findings reveal that the supersaturation dynamics of NC growth can be more complex than previously understood. As our approach is applicable to many types of NCs undergoing classical growth, this work presents an initial step towards more deeply interpreting the phenomena governing nanoscale crystal growth and provides insight for the rational design of NCs.


Nanoparticles , Crystallization , Nanoparticles/chemistry
7.
Biomacromolecules ; 23(1): 67-76, 2022 01 10.
Article En | MEDLINE | ID: mdl-34647719

Herein, we describe a new technique, direct saturation compensated transfer (DISCO) NMR, to characterize protein-macromolecule interactions. DISCO enables the direct observation of intermolecular interactions and is used to investigate mucoadhesion, a type of polymer-protein interaction that is widely implemented in drug delivery but remains poorly understood. In a model system of bovine submaxillary mucin and poly(acrylic acid), DISCO identifies selective backbone interactions that facilitate mucoadhesion through chain interpenetration. DISCO demonstrated distinct patterns of molecular selectivity between mucoadhesive polymers when applied to hydroxypropyl cellulose and carboxymethyl cellulose and that functionalizing adhesive polymers with strongly interacting moieties may be detrimental to the overall adhesive interaction. Additionally, DISCO was used to estimate polymer-protein dissociation constants using individual proton signals as reporters. Overall, DISCO can be used as a label-free screening tool to generate polymer-specific binding fingerprints to map and quantify interactions between macromolecules.


Drug Delivery Systems , Polymers , Adhesives , Animals , Cattle , Chemical Phenomena , Magnetic Resonance Spectroscopy , Polymers/chemistry
9.
Elife ; 102021 08 20.
Article En | MEDLINE | ID: mdl-34414888

Background: Previously, we conducted a systematic review and analyzed the respiratory kinetics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Chen et al., 2021). How age, sex, and coronavirus disease 2019 (COVID-19) severity interplay to influence the shedding dynamics of SARS-CoV-2, however, remains poorly understood. Methods: We updated our systematic dataset, collected individual case characteristics, and conducted stratified analyses of SARS-CoV-2 shedding dynamics in the upper (URT) and lower respiratory tract (LRT) across COVID-19 severity, sex, and age groups (aged 0-17 years, 18-59 years, and 60 years or older). Results: The systematic dataset included 1266 adults and 136 children with COVID-19. Our analyses indicated that high, persistent LRT shedding of SARS-CoV-2 characterized severe COVID-19 in adults. Severe cases tended to show slightly higher URT shedding post-symptom onset, but similar rates of viral clearance, when compared to nonsevere infections. After stratifying for disease severity, sex and age (including child vs. adult) were not predictive of respiratory shedding. The estimated accuracy for using LRT shedding as a prognostic indicator for COVID-19 severity was up to 81%, whereas it was up to 65% for URT shedding. Conclusions: Virological factors, especially in the LRT, facilitate the pathogenesis of severe COVID-19. Disease severity, rather than sex or age, predicts SARS-CoV-2 kinetics. LRT viral load may prognosticate COVID-19 severity in patients before the timing of deterioration and should do so more accurately than URT viral load. Funding: Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, NSERC Senior Industrial Research Chair, and the Toronto COVID-19 Action Fund.


COVID-19/physiopathology , Respiratory System/physiopathology , SARS-CoV-2/physiology , Virus Shedding , Adult , COVID-19/diagnosis , COVID-19/virology , Child , Female , Humans , Male , Prognosis , Respiratory System/virology , Severity of Illness Index , Viral Load
10.
Elife ; 102021 04 16.
Article En | MEDLINE | ID: mdl-33861198

Background: Which virological factors mediate overdispersion in the transmissibility of emerging viruses remains a long-standing question in infectious disease epidemiology. Methods: Here, we use systematic review to develop a comprehensive dataset of respiratory viral loads (rVLs) of SARS-CoV-2, SARS-CoV-1 and influenza A(H1N1)pdm09. We then comparatively meta-analyze the data and model individual infectiousness by shedding viable virus via respiratory droplets and aerosols. Results: The analyses indicate heterogeneity in rVL as an intrinsic virological factor facilitating greater overdispersion for SARS-CoV-2 in the COVID-19 pandemic than A(H1N1)pdm09 in the 2009 influenza pandemic. For COVID-19, case heterogeneity remains broad throughout the infectious period, including for pediatric and asymptomatic infections. Hence, many COVID-19 cases inherently present minimal transmission risk, whereas highly infectious individuals shed tens to thousands of SARS-CoV-2 virions/min via droplets and aerosols while breathing, talking and singing. Coughing increases the contagiousness, especially in close contact, of symptomatic cases relative to asymptomatic ones. Infectiousness tends to be elevated between 1 and 5 days post-symptom onset. Conclusions: Intrinsic case variation in rVL facilitates overdispersion in the transmissibility of emerging respiratory viruses. Our findings present considerations for disease control in the COVID-19 pandemic as well as future outbreaks of novel viruses. Funding: Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant program, NSERC Senior Industrial Research Chair program and the Toronto COVID-19 Action Fund.


To understand how viruses spread scientists look at two things. One is ­ on average ­ how many other people each infected person spreads the virus to. The other is how much variability there is in the number of people each person with the virus infects. Some viruses like the 2009 influenza H1N1, a new strain of influenza that caused a pandemic beginning in 2009, spread pretty uniformly, with many people with the virus infecting around two other people. Other viruses like SARS-CoV-2, the one that causes COVID-19, are more variable. About 10 to 20% of people with COVID-19 cause 80% of subsequent infections ­ which may lead to so-called superspreading events ­ while 60-75% of people with COVID-19 infect no one else. Learning more about these differences can help public health officials create better ways to curb the spread of the virus. Chen et al. show that differences in the concentration of virus particles in the respiratory tract may help to explain why superspreaders play such a big role in transmitting SARS-CoV-2, but not the 2009 influenza H1N1 virus. Chen et al. reviewed and extracted data from studies that have collected how much virus is present in people infected with either SARS-CoV-2, a similar virus called SARS-CoV-1 that caused the SARS outbreak in 2003, or with 2009 influenza H1N1. Chen et al. found that as the variability in the concentration of the virus in the airways increased, so did the variability in the number of people each person with the virus infects. Chen et al. further used mathematical models to estimate how many virus particles individuals with each infection would expel via droplets or aerosols, based on the differences in virus concentrations from their analyses. The models showed that most people with COVID-19 infect no one because they expel little ­ if any ­ infectious SARS-CoV-2 when they talk, breathe, sing or cough. Highly infectious individuals on the other hand have high concentrations of the virus in their airways, particularly the first few days after developing symptoms, and can expel tens to thousands of infectious virus particles per minute. By contrast, a greater proportion of people with 2009 influenza H1N1 were potentially infectious but tended to expel relatively little infectious virus when the talk, sing, breathe or cough. These results help explain why superspreaders play such a key role in the ongoing pandemic. This information suggests that to stop this virus from spreading it is important to limit crowd sizes, shorten the duration of visits or gatherings, maintain social distancing, talk in low volumes around others, wear masks, and hold gatherings in well-ventilated settings. In addition, contact tracing can prioritize the contacts of people with high concentrations of virus in their airways.


Aerosols , COVID-19/transmission , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/transmission , SARS-CoV-2/physiology , Severe Acute Respiratory Syndrome/transmission , Severe acute respiratory syndrome-related coronavirus/physiology , Virus Shedding , Disease Transmission, Infectious , Humans , Viral Load
11.
Acta Biomater ; 122: 1-25, 2021 03 01.
Article En | MEDLINE | ID: mdl-33352300

Recent advances in biomaterials integrate metal nanoparticles with hydrogels to generate composite materials that exhibit new or improved properties. By precisely controlling the composition, arrangement and interactions of their constituents, these hybrid materials facilitate biomedical applications through myriad approaches. In this work we seek to highlight three popular frameworks for designing metal nanoparticle-hydrogel hybrid materials for biomedical applications. In the first approach, the properties of metal nanoparticles are incorporated into a hydrogel matrix such that the composite is selectively responsive to stimuli such as light and magnetic flux, enabling precisely activated therapeutics and self-healing biomaterials. The second approach mediates the dynamic reorganization of metal nanoparticles based on environment-directed changes in hydrogel structure, leading to chemosensing, microbial and viral detection, and drug-delivery capabilities. In the third approach, the hydrogel matrix spatially arranges metal nanoparticles to produce metamaterials or passively enhance nanoparticle properties to generate improved substrates for biomedical applications including tissue engineering and wound healing. This article reviews the construction, properties and biomedical applications of metal nanoparticle-hydrogel composites, with a focus on how they help to prevent, diagnose and treat diseases. Discussion includes how the composites lead to new or improved properties, how current biomedical research leverages these properties and the emerging directions in this growing field.


Hydrogels , Metal Nanoparticles , Biocompatible Materials , Drug Delivery Systems , Tissue Engineering
12.
PLoS One ; 15(12): e0243965, 2020.
Article En | MEDLINE | ID: mdl-33326504

The response to the COVID-19 epidemic is generating severe shortages of personal protective equipment around the world. In particular, the supply of N95 respirator masks has become severely depleted, with supplies having to be rationed and health care workers having to use masks for prolonged periods in many countries. We sought to test the ability of 7 different decontamination methods: autoclave treatment, ethylene oxide gassing (ETO), low temperature hydrogen peroxide gas plasma (LT-HPGP) treatment, vaporous hydrogen peroxide (VHP) exposure, peracetic acid dry fogging (PAF), ultraviolet C irradiation (UVCI) and moist heat (MH) treatment to decontaminate a variety of different N95 masks following experimental contamination with SARS-CoV-2 or vesicular stomatitis virus as a surrogate. In addition, we sought to determine whether masks would tolerate repeated cycles of decontamination while maintaining structural and functional integrity. All methods except for UVCI were effective in total elimination of viable virus from treated masks. We found that all respirator masks tolerated at least one cycle of all treatment modalities without structural or functional deterioration as assessed by fit testing; filtration efficiency testing results were mostly similar except that a single cycle of LT-HPGP was associated with failures in 3 of 6 masks assessed. VHP, PAF, UVCI, and MH were associated with preserved mask integrity to a minimum of 10 cycles by both fit and filtration testing. A similar result was shown with ethylene oxide gassing to the maximum 3 cycles tested. Pleated, layered non-woven fabric N95 masks retained integrity in fit testing for at least 10 cycles of autoclaving but the molded N95 masks failed after 1 cycle; filtration testing however was intact to 5 cycles for all masks. The successful application of autoclaving for layered, pleated masks may be of particular use to institutions globally due to the virtually universal accessibility of autoclaves in health care settings. Given the ability to modify widely available heating cabinets on hospital wards in well-resourced settings, the application of moist heat may allow local processing of N95 masks.


Decontamination/methods , Equipment Reuse , N95 Respirators/virology , COVID-19/pathology , COVID-19/virology , Ethylene Oxide/pharmacology , Humans , Hydrogen Peroxide/pharmacology , Peracetic Acid/pharmacology , Plasma Gases/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , SARS-CoV-2/radiation effects , Ultraviolet Rays , Vesiculovirus/drug effects , Vesiculovirus/radiation effects
13.
Heliyon ; 6(10): e05294, 2020 Oct.
Article En | MEDLINE | ID: mdl-33163649

Swelling of normal corn starch granules through heating in water leads to enlargement of the starch particles and a corresponding increase in internal cavity size. Through control of the swelling extent, it is possible to tune the size of the internal cavity for the starch microcapsules (SMCs). The swelling extent can be controlled through regulation of the swelling time and the swelling temperature. Since the swelling extent is correlated with particle size and solubility, these aspects may also be controlled. Imaging the SMCs at increasing levels of swelling extent using scanning electron microscopy (SEM) allowed for the internal cavity swelling process to be clearly observed. Brightfield and polarizing light microscopy validated the SEM observations. Confocal laser scanning microscopy provided further validation and indicated that it is possible to load the SMCs with large molecules through diffusion. The highly tunable SMCs are novel microparticles which could have applications in various industries.

14.
J Biophotonics ; 13(12): e202000232, 2020 12.
Article En | MEDLINE | ID: mdl-32888380

This study presents numerical simulations of UVC light propagation through seven different filtered face respirators (FFR) to determine their suitability for Ultraviolet germicidal inactivation (UVGI). UV propagation was modeled using the FullMonte program for two external light illuminations. The optical properties of the dominant three layers were determined using the inverse adding doubling method. The resulting fluence rate volume histograms and the lowest fluence rate recorded in the modeled volume, sometimes in the nW cm-2 , provide feedback on a respirator's suitability for UVGI and the required exposure time for a given light source. While UVGI can present an economical approach to extend an FFR's useable lifetime, it requires careful optimization of the illumination setup and selection of appropriate respirators.


COVID-19 , Equipment Reuse , Decontamination , Disinfection , Humans , Ultraviolet Rays , Ventilators, Mechanical
15.
Chemosphere ; 254: 126732, 2020 Sep.
Article En | MEDLINE | ID: mdl-32320831

Effective targeted delivery of nanoparticle agents may enhance the remediation of soils and site characterization efforts. Nanoparticles coated with Pluronic, an amphiphilic block co-polymer, demonstrated targeted binding behaviour toward light non-aqueous phase liquids such as heavy crude oil. Various factors including coating concentration, oil concentration, oil type, temperature, and pH were assessed to determine their effect on nanoparticle binding to heavy crude oil-impacted sandy aquifer material. Nanoparticle binding was increased by decreasing the coating concentration, increasing oil concentration, using heavier oil types, and increasing temperature, while pH over the range of 5-9 was found to have no effect. Nanoparticle transport and binding in columns packed with clean and oily porous media demonstrated the ability for efficient nanoparticle targeted binding. For the conditions explored, the attachment rate coefficient in columns packed with clean sand was 2.10 ± 0.66 × 10-4 s-1; however, for columns packed with oil-impacted sand a minimum attachment rate coefficient of 8.86 ± 0.43 × 10-4 s-1 was estimated. The higher attachment rate for the oil-impacted sand system indicates that nanoparticles may preferentially accumulate to oil-impacted zones present at heterogeneous impacted sites. Simulations were used to demonstrate this hypothesis using the set of parameters generated in this effort. This work contributes to our understanding of the application conditions that are required for efficient targeted binding of nanoparticles to crude-oil impacted porous media.


Ferric Compounds/chemistry , Hydrocarbons/chemistry , Nanoparticles/chemistry , Petroleum , Soil Pollutants/chemistry , Groundwater/chemistry , Hydrocarbons/isolation & purification , Poloxamer/chemistry , Porosity , Silicon Dioxide/chemistry , Soil Pollutants/isolation & purification
16.
Anesthesiology ; 130(5): 778-790, 2019 05.
Article En | MEDLINE | ID: mdl-30870158

BACKGROUND: Human umbilical cord mesenchymal stromal cells possess considerable therapeutic promise for acute respiratory distress syndrome. Umbilical cord mesenchymal stromal cells may exert therapeutic effects via extracellular vesicles, while priming umbilical cord mesenchymal stromal cells may further enhance their effect. The authors investigated whether interferon-γ-primed umbilical cord mesenchymal stromal cells would generate mesenchymal stromal cell-derived extracellular vesicles with enhanced effects in Escherichia coli (E. coli) pneumonia. METHODS: In a university laboratory, anesthetized adult male Sprague-Dawley rats (n = 8 to 18 per group) underwent intrapulmonary E. coli instillation (5 × 10 colony forming units per kilogram), and were randomized to receive (a) primed mesenchymal stromal cell-derived extracellular vesicles, (b) naïve mesenchymal stromal cell-derived extracellular vesicles (both 100 million mesenchymal stromal cell-derived extracellular vesicles per kilogram), or (c) vehicle. Injury severity and bacterial load were assessed at 48 h. In vitro studies assessed the potential for primed and naïve mesenchymal stromal cell-derived extracellular vesicles to enhance macrophage bacterial phagocytosis and killing. RESULTS: Survival increased with primed (10 of 11 [91%]) and naïve (8 of 8 [100%]) mesenchymal stromal cell-derived extracellular vesicles compared with vehicle (12 of 18 [66.7%], P = 0.038). Primed-but not naïve-mesenchymal stromal cell-derived extracellular vesicles reduced alveolar-arterial oxygen gradient (422 ± 104, 536 ± 58, 523 ± 68 mm Hg, respectively; P = 0.008), reduced alveolar protein leak (0.7 ± 0.3, 1.4 ± 0.4, 1.5 ± 0.7 mg/ml, respectively; P = 0.003), increased lung mononuclear phagocytes (23.2 ± 6.3, 21.7 ± 5, 16.7 ± 5 respectively; P = 0.025), and reduced alveolar tumor necrosis factor alpha concentrations (29 ± 14.5, 35 ± 12.3, 47.2 ± 6.3 pg/ml, respectively; P = 0.026) compared with vehicle. Primed-but not naïve-mesenchymal stromal cell-derived extracellular vesicles enhanced endothelial nitric oxide synthase production in the injured lung (endothelial nitric oxide synthase/ß-actin = 0.77 ± 0.34, 0.25 ± 0.29, 0.21 ± 0.33, respectively; P = 0.005). Both primed and naïve mesenchymal stromal cell-derived extracellular vesicles enhanced E. coli phagocytosis and bacterial killing in human acute monocytic leukemia cell line (THP-1) in vitro (36.9 ± 4, 13.3 ± 8, 0.1 ± 0.01%, respectively; P = 0.0004) compared with vehicle. CONCLUSIONS: Extracellular vesicles from interferon-γ-primed human umbilical cord mesenchymal stromal cells more effectively attenuated E. coli-induced lung injury compared with extracellular vesicles from naïve mesenchymal stromal cells, potentially via enhanced macrophage phagocytosis and killing of E. coli.


Acute Lung Injury/therapy , Escherichia coli Infections/complications , Extracellular Vesicles/physiology , Interferon-gamma/pharmacology , Mesenchymal Stem Cells/cytology , Umbilical Cord/cytology , Animals , Humans , Macrophages/immunology , Male , Phagocytosis , Rats , Rats, Sprague-Dawley
17.
Environ Technol ; 40(14): 1821-1830, 2019 Jun.
Article En | MEDLINE | ID: mdl-29345538

The study of the environmental fate of nanoscale TiO2 (n-TiO2) is a major recent research focus which requires a rapid and accurate on-site concentration determination method. Inductively coupled plasma mass spectroscopy (ICP-MS) has been the most widely used method for determining the concentration of n-TiO2 in environmental samples; however, poses many challenges, such as hazardous hydrofluoric acid pre-treatment and clear limitations in mobile on-site measurement and monitoring. This study demonstrates that industrial wastewater containing natural organic matter (NOM) can present a major challenge to the analysis of n-TiO2 by ICP-MS, and introduces a spectrophotometry technique that can be used as an alternative. The results suggest that spectrophotometry methods can be more accurate than slurry nebulization ICP-MS for measuring the concentrations of n-TiO2 in wastewater containing NOM under low salt conditions. Furthermore, this study demonstrates the use of a portable flow-through spectrophotometer for use in applications of wastewater treatment and environmental monitoring with real-time feedback of n-TiO2 concentrations. The ability to detect and monitor n-TiO2 will greatly assist in improving the understanding of hazards and risks that emerging nanomaterials pose to the environment and the public health.


Environmental Monitoring , Titanium , Ions , Spectrophotometry , Wastewater
18.
Langmuir ; 35(5): 1756-1767, 2019 02 05.
Article En | MEDLINE | ID: mdl-30056710

Surface fouling remains an exigent issue for many biological implants. Unwanted solutes adsorb to reduce device efficiency and hasten degradation while increasing the risks of microbial colonization and adverse inflammatory response. To address unwanted fouling in modern implants in vivo, surface modification with antifouling polymers has become indispensable. Recently, zwitterionic self-assembled monolayers, which contain two or more charged functional groups but are electrostatically neutral and form highly hydrated surfaces, have been the focus of many antifouling coatings. Reports using various compositions of zwitterionic polymer brushes have demonstrated ultralow fouling in the ng/cm2 range. These coatings, however, are thick and can hinder the target application of biological devices. Here, we report an ultrathin (8.52 Å) antifouling self-assembled monolayer composed of cysteine that is amenable to facile fabrication. The antifouling characteristics of the zwitterionic surfaces were evaluated against bovine serum albumin, fibrinogen, and human blood in real time using quartz crystal microbalance and surface plasmon resonance imaging. Compared to untreated gold surfaces, the ultrathin cysteine coating reduced the adsorption of bovine serum albumin by 95% (43 ng/cm2 adsorbed) after 3 h and 90% reduction after 24 h. Similarly, the cysteine self-assembled monolayer reduced the adsorption of fibrinogen as well as human blood by >90%. The surfaces were further characterized using scanning electron microscopy: protein-enhanced adsorption and cellular adsorption in human blood was found on untreated surfaces but not on the cysteine SAM-protected surfaces. These findings suggest that surfaces can be functionalized with an ultrathin layer of cysteine to resist the adsorption of key proteins, with performance comparable to zwitterionic polymer brushes. As such, cysteine surface coatings are a promising methodology to improve the long-term utility of biological devices.


Biofouling/prevention & control , Cysteine/chemistry , Membranes, Artificial , Adsorption/drug effects , Animals , Blood , Cattle , Fibrinogen/chemistry , Humans , Quartz Crystal Microbalance Techniques , Serum Albumin, Bovine/chemistry , Surface Plasmon Resonance , Surface Properties
19.
Chemosphere ; 215: 353-361, 2019 Jan.
Article En | MEDLINE | ID: mdl-30326441

Targeted nanoparticle binding has become a core feature of experimental pharmaceutical product design which enables more efficient payload delivery and enhances medical imaging by accumulating nanoparticles in specific tissues. Environmental remediation and geophysical monitoring encounter similar challenges which may be addressed in part by the adoption of targeted nanoparticle binding strategies. This study illustrates that engineered nanoparticles can bind to crude oil-impacted silica sand, a selective adsorption driven by active targeting based on an amphiphilic polymer coating. This coating strategy resulted in 2 mg/kg attachment to clean silica sand compared to 8 mg/kg attachment to oil-impacted silica sand. It was also shown that modifying the surface coating influenced the binding behaviour of the engineered nanoparticles - more hydrophobic polymers resulted in increased binding. Successful targeting of Pluronic-coated iron oxide nanoparticles to a crude oil and silica sand mixture was demonstrated through a combined quantitative Orbital Emission Spectroscopy mass analysis supported by Vibrating Scanning Magnetometer magnetometry, and a qualitative X-ray micro-computed tomography (CT) visualization approach. These non-destructive characterization techniques facilitated efficient analysis of nanoparticles in porous medium samples with minimal sample preparation, and in the case of X-Ray CT, illustrated how targeted nanoparticle binding may be used to produce 3-D images of contaminated porous media. This work demonstrated successful implementation of nanoparticle targeted binding toward viscous LNAPL such as crude oil in the presence of a porous medium, a step which opens the door to successful application of targeted delivery technology in environmental remediation and monitoring.


Drug Delivery Systems/methods , Environmental Restoration and Remediation , Hydrocarbons/chemistry , Nanoparticles/analysis , Petroleum , Nanoparticles/chemistry , Polymers/chemistry , Porosity , Silicon Dioxide , X-Ray Microtomography
20.
Talanta ; 182: 259-266, 2018 May 15.
Article En | MEDLINE | ID: mdl-29501150

Combined separation and detection of biomolecules has the potential to speed up and improve the sensitivity of disease detection, environmental testing, and biomolecular analysis. In this work, we synthesized magnetic particles coated with spiky nanostructured gold shells and used them to magnetically separate out and detect oligonucleotides using SERS. The distance dependence of the SERS signal was then harnessed to detect DNA hybridization using a Raman label bound to a hairpin probe. The distance of the Raman label from the surface increased upon complementary DNA hybridization, leading to a decrease in signal intensity. This work demonstrates the use of the particles for combined separation and detection of oligonucleotides without the use of an extrinsic tag or secondary hybridization step.


Biosensing Techniques , DNA, Single-Stranded/analysis , DNA/analysis , Magnetite Nanoparticles/chemistry , Nanostructures/chemistry , Spectrum Analysis, Raman/standards , Chlorides/chemistry , DNA Probes/chemical synthesis , DNA Probes/chemistry , Ferric Compounds/chemistry , Gold/chemistry , Humans , Inverted Repeat Sequences , Magnetite Nanoparticles/ultrastructure , Nanostructures/ultrastructure , Nucleic Acid Hybridization , Oligonucleotides/chemistry , Sensitivity and Specificity , Silicon Dioxide/chemistry , Solutions
...