Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2407070, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39091051

RESUMEN

Single-atom catalysts (SACs) have been increasingly explored in lithium-sulfur (Li-S) batteries to address the issues of severe polysulfide shuttle effects and sluggish redox kinetics. However, the structure-activity relationship between single-atom coordination structures and the performance of Li-S batteries remain unclear. In this study, a P, S co-coordination asymmetric configuration of single atoms is designed to enhance the catalytic activity of Co central atoms and promote d-p orbital hybridization between Co and S atoms, thereby limiting polysulfides and accelerating the bidirectional redox process of sulfur. The well-designed SACs enable Li-S batteries to demonstrate an ultralow capacity fading rate of 0.027% per cycle after 2000 cycles at a high rate of 5 C. Furthermore, they display excellent rate performance with a capacity of 619 mAh g-1 at an ultrahigh rate of 10 C due to the efficient catalysis of CoSA-N3PS. Importantly, the assembled pouch cell still retains a high discharge capacity of 660 mAh g-1 after 100 cycles at 0.2 C and provides a high areal capacity of 4.4 mAh cm-2 even with a high sulfur loading of 6 mg cm-2. This work demonstrates that regulating the coordination environment of SACs is of great significance for achieving state-of-the-art Li-S batteries.

2.
PLoS One ; 19(5): e0300849, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753707

RESUMEN

The improvement of sandy soils with poor seismic properties to modify their dynamic characteristics is of great importance in seismic design for engineering sites. In this study, a series of dynamic tests on sandy soils sandy soils with poor seismic conditions were conducted using the GCTS resonant column system to investigate the improvements effects of different cement contents on dynamic characteristic parameters. The research findings are as follows: The cement content has certain influences on the dynamic shear modulus, dynamic shear modulus ratio, the maximum dynamic shear modulus, and the damping ratio of sandy soils with poor seismic properties. Among them, the influence on dynamic shear modulus is limited, while the damping ratio is significantly affected. The addition of cement to seismic-poor sandy soils significantly enhances their dynamic characteristics. The most noticeable improvement is observed when the cement content is 8%. Through curve fitting analysis, a relationship equation is established between the maximum dynamic shear modulus and the cement content, and the relevant parameters are provided. A comparative test between the improved soils and the remolded soils reveals that the addition of cement significantly improves the seismic performance of the poor soils. The recommended values for the range of variation of the dynamic shear modulus ratio and damping ratio are provided, considering the effect of improvement. These research findings provide reference guidelines for seismic design and engineering sites.


Asunto(s)
Materiales de Construcción , Terremotos , Suelo , Suelo/química , Materiales de Construcción/análisis , Arena/química , Resistencia al Corte
3.
J Hazard Mater ; 386: 121883, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31881494

RESUMEN

Formaldehyde (FA) is a chemical substance with tremendously noxious feature for human health and it causes serious damages to living organisms. The recognition of formaldehyde in the form of fluorescent signals has been extensively explored by using a few molecular scaffolds in buffer mediums. In particular, the study for sensing of formaldehyde both in solution and solid state has generated considerable interests. Herein, a new ratiometric fluorescent probe 1-(5-(9-phenyl-9H-carbazol-3-yl)thiophen-2-yl)but-3-en-1-amine (SO-GJP) has been synthesized for selective detection of FA based on aza-Cope reaction. In the presence of FA from 0 to 1.3 mM, the emission band of SO-GJP varies from 393 nm to 542 nm and the detection limit has been calculated to be 1.55 µM. The entrapment of SO-GJP onto the thin layer chromatography (TLC) plate leads to the successful detection of FA with sensitive color change from white to yellow. Moreover, the response mechanism has been explained by FA-induced 2-aza-Cope rearrangement within SO-GJP and the chemical processes are supported by density functional theory, fluorescence and UV-vis spectra. The integration of responsive units based on carbazole platform can serve as one of the powerful strategies by directly converting signals at different circumstances into fluorescence.

4.
Nanoscale ; 11(27): 13058-13068, 2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31265041

RESUMEN

A natural resource such as peony flower has been employed for the first time as a new carbon precursor to prepare green-emitting carbon nanodots (CDs). The emission peak is situated at 523 nm and the excitation wavelength can be extended to the visible light range (452 nm). Due to the formation of CD-MnO2 nanocomposites, the emission intensity of CDs is sharply reduced as a consequence of Förster resonance energy transfer (FRET). Moreover, glucose can be recognized due to the enzymatic conversion of glucose by glucose oxidase to generate H2O2. The MnO2 nanosheets are reduced to form Mn(ii) ions, and the fluorescence of CDs can be recovered. The fluorescence intensity has been improved linearly based on the increasing concentration of glucose (0.5-250 µM) with a detection limit as low as 0.18 µM. This strategy gives a new selection of eco-friendly precursors in carbon nanomaterials and such a consecutive recognition process provides valuable insights for bio-analysis.


Asunto(s)
Glucemia/análisis , Carbono/química , Transferencia Resonante de Energía de Fluorescencia , Compuestos de Manganeso/química , Óxidos/química , Puntos Cuánticos/química , Transducción de Señal , Glucosa Oxidasa/química , Humanos
5.
Artículo en Inglés | MEDLINE | ID: mdl-30616167

RESUMEN

Bacillus anthracis spore causes anthrax to seriously threaten human health and even cause death. 2,6-Pyridinedicarboxylic acid (DPA) is a unique biomarker because it is a major component of Bacillus anthracis spore. Herein, we design europium functionalized silicon quantum dots as a ratiometric fluorescent nanoprobe to detect DPA with high sensitivity and selectivity. With the addition of DPA, the red emission peaks were observed at 618 nm. The novel probe enables ratiometric and sensitive DPA detection over nanomolar concentrations (as low as 1.02 µM). This work provided an efficient background-free and self-calibrating method for the recognition of DPA.


Asunto(s)
Bacillus anthracis/metabolismo , Biomarcadores/análisis , Europio/química , Nanoestructuras/química , Puntos Cuánticos/química , Silicio/química , Fluorescencia , Concentración de Iones de Hidrógeno , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Piridinas/química , Estándares de Referencia , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA