Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol Res (Camb) ; 5(2): 570-582, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30090371

RESUMEN

The human ether-a-go-go related gene (hERG) plays an important role in cardiac action potential. It encodes an ion channel protein named Kv11.1, which is related to long QT syndrome and may cause avoidable sudden cardiac death. Therefore, it is important to assess the hERG channel blockage of lead compounds in an early drug discovery process. In this study, we collected a large data set containing 1163 diverse compounds with IC50 values determined by the patch clamp method on mammalian cell lines. The whole data set was divided into 80% as the training set and 20% as the test set. Then, five machine learning methods were applied to build a series of binary classification models based on 13 molecular descriptors, five fingerprints and molecular descriptors combining fingerprints at four IC50 thresholds to discriminate hERG blockers from nonblockers, respectively. Models built by molecular descriptors combining fingerprints were validated by using an external validation set containing 407 compounds collected from the hERGCentral database. The performance indicated that the model built by molecular descriptors combining fingerprints yielded the best results and each threshold had its best suitable method, which means that hERG blockage assessment might depend on threshold values. Meanwhile, kNN and SVM methods were better than the others for model building. Furthermore, six privileged substructures were identified using information gain and frequency analysis methods, which could be regarded as structural alerts of cardiac toxicity mediated by hERG channel blockage.

2.
Mol Inform ; 34(10): 679-88, 2015 10.
Artículo en Inglés | MEDLINE | ID: mdl-27490968

RESUMEN

Rapid safety assessment is more and more needed for the increasing chemicals both in chemical industries and regulators around the world. The traditional experimental methods couldn't meet the current demand any more. With the development of the information technology and the growth of experimental data, in silico modeling has become a practical and rapid alternative for the assessment of chemical properties, especially for the toxicity prediction of organic chemicals. In this study, a quantitative regression workflow was built by KNIME to predict chemical properties. With this regression workflow, quantitative values of chemical properties can be obtained, which is different from the binary-classification model or multi-classification models that can only give qualitative results. To illustrate the usage of the workflow, two predictive models were constructed based on datasets of Tetrahymena pyriformis toxicity and Aqueous solubility. The qcv (2) and qtest (2) of 5-fold cross validation and external validation for both types of models were greater than 0.7, which implies that our models are robust and reliable, and the workflow is very convenient and efficient in prediction of various chemical properties.


Asunto(s)
Simulación por Computador , Bases de Datos de Compuestos Químicos , Modelos Biológicos , Máquina de Vectores de Soporte , Tetrahymena pyriformis/metabolismo , Tetrahymena pyriformis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA