Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Biosensors (Basel) ; 14(4)2024 Apr 03.
Article En | MEDLINE | ID: mdl-38667165

The exploration into nanomaterial-based nonenzymatic biosensors with superb performance in terms of good sensitivity and anti-interference ability in disease marker monitoring has always attained undoubted priority in sensing systems. In this work, we report the design and synthesis of a highly active nanocatalyst, i.e., palladium and platinum nanoparticles (Pt&Pd-NPs) decorated ultrathin nanoporous gold (NPG) film, which is modified on a homemade graphene paper (GP) to develop a high-performance freestanding and flexible nanohybrid electrode. Owing to the structural characteristics the robust GP electrode substrate, and high electrochemically catalytic activities and durability of the permeable NPG support and ultrafine and high-density Pt&Pd-NPs on it, the resultant Pt&Pd-NPs-NPG/GP electrode exhibits excellent sensing performance of low detection limitation, high sensitivity and anti-interference capability, good reproducibility and long-term stability for the detection of small molecular biomarkers hydrogen peroxide (H2O2) and glucose (Glu), and has been applied to the monitoring of H2O2 in different types of live cells and Glu in body fluids such as urine and fingertip blood, which is of great significance for the clinical diagnosis and prognosis in point-of-care testing.


Biomarkers , Biosensing Techniques , Electrochemical Techniques , Gold , Graphite , Metal Nanoparticles , Palladium , Platinum , Graphite/chemistry , Gold/chemistry , Platinum/chemistry , Palladium/chemistry , Metal Nanoparticles/chemistry , Biomarkers/urine , Humans , Hydrogen Peroxide , Alloys/chemistry , Glucose/analysis , Electrodes , Paper
2.
Adv Sci (Weinh) ; 11(14): e2305394, 2024 Apr.
Article En | MEDLINE | ID: mdl-38308195

Halide solid-state electrolytes (SSEs) hold promise for the commercialization of all-solid-state lithium batteries (ASSLBs); however, the currently cost-effective zirconium-based chloride SSEs suffer from hygroscopic irreversibility, low ionic conductivity, and inadequate thermal stability. Herein, a novel indium-doped zirconium-based chloride is fabricated to satisfy the abovementioned requirements, achieving outstanding-performance ASSLBs at room temperature. Compared to the conventional Li2ZrCl6 and Li3InCl6 SSEs, the hc-Li2+xZr1-xInxCl6 (0.3 ≤ x ≤ 1) possesses higher ionic conductivity (up to 1.4 mS cm-1), and thermal stability (350 °C). At the same time, the hc-Li2.8Zr0.2In0.8Cl6 also shows obvious hygroscopic reversibility, where its recovery rate of the ionic conductivity is up to 82.5% after 24-h exposure in the 5% relative humidity followed by heat treatment. Theoretical calculation and experimental results reveal that those advantages are derived from the lattice expansion and the formation of Li3InCl6 ·2H2O hydrates, which can effectively reduce the migration energy barrier of Li ions and offer reversible hydration/dehydration pathway. Finally, an ASSLB, assembled with reheated-Li2.8Zr0.2In0.8Cl6 after humidity exposure, single-crystal LiNi0.8Mn0.1Co0.1O2 and Li-In alloy, exhibits capacity retention of 71% after 500 cycles under 1 C at 25 °C. This novel high-humidity-tolerant chloride electrolyte is expected to greatly carry forward the ASSLBs industrialization.

3.
Nano Lett ; 23(24): 11818-11826, 2023 Dec 27.
Article En | MEDLINE | ID: mdl-38078871

An atomic-scale understanding of the role of nonperiodic features is essential to the rational design of highly Li-ion-conductive solid electrolytes. Unfortunately, most solid electrolytes are easily damaged by the intense electron beam needed for atomic-resolution electron microscopy observation, so the reported in-depth atomic-scale studies are limited to Li0.33La0.56TiO3- and Li7La3Zr2O12-based materials. Here, we observe on an atomic scale a third type of solid electrolyte, Li1.3Al0.3Ti1.7(PO4)3 (LATP), through minimization of damage induced by specimen preparation. With this capability, LATP is found to contain large amounts of twin boundaries with an unusual asymmetric atomic configuration. On the basis of the experimentally determined structure, the theoretical calculations suggest that such asymmetric twin boundaries may considerably promote Li-ion transport. This discovery identifies a new entry point for optimizing ionic conductivity, and the method presented here will also greatly benefit the mechanistic study of solid electrolytes.

4.
Nat Commun ; 14(1): 3807, 2023 Jun 27.
Article En | MEDLINE | ID: mdl-37369677

To enable the development of all-solid-state batteries, an inorganic solid-state electrolyte should demonstrate high ionic conductivity (i.e., > 1 mS cm-1 at 25 °C), compressibility (e.g., > 90% density under 250-350 MPa), and cost-effectiveness (e.g., < $50/kg). Here we report the development and preparation of Li1.75ZrCl4.75O0.5 oxychloride solid-state electrolyte that demonstrates an ionic conductivity of 2.42 mS cm-1 at 25 °C, a compressibility enabling 94.2% density under 300 MPa and an estimated raw materials cost of $11.60/kg. As proof of concept, the Li1.75ZrCl4.75O0.5 is tested in combination with a LiNi0.8Mn0.1Co0.1O2-based positive electrode and a Li6PS5Cl-coated Li-In negative electrode in lab-scale cell configuration. This all-solid-state cell delivers a discharge capacity retention of 70.34% (final discharge capacity of 70.2 mAh g-1) after 2082 cycles at 1 A g-1, 25 °C and 1.5 tons of stacking pressure.

5.
Nat Commun ; 14(1): 1632, 2023 Mar 24.
Article En | MEDLINE | ID: mdl-36964134

Space-charge layers are frequently believed responsible for the large resistance of different interfaces in all-solid-state Li batteries. However, such propositions are based on the presumed existence of a Li-deficient space-charge layer with insufficient charge carriers, instead of a comprehensive investigation on the atomic configuration and its ion transport behavior. Consequently, the real influence of space-charge layers remains elusive. Here, we clarify the role of space-charge layers in Li0.33La0.56TiO3, a prototype solid electrolyte with large grain-boundary resistance, through a combined experimental and computational study at the atomic scale. In contrast to previous speculations, we do not observe the Li-deficient space-charge layers commonly believed to result in large resistance. Instead, the actual space-charge layers are Li-excess; accommodating the additional Li+ at the 3c interstitials, such space-charge layers allow for rather efficient ion transport. With the space-charge layers excluded from the potential bottlenecks, we identify the Li-depleted grain-boundary cores as the major cause for the large grain-boundary resistance in Li0.33La0.56TiO3.

6.
Nat Commun ; 14(1): 1396, 2023 Mar 13.
Article En | MEDLINE | ID: mdl-36914653

The development of energy-dense all-solid-state Li-based batteries requires positive electrode active materials that are ionic conductive and compressible at room temperature. Indeed, these material properties could contribute to a sensible reduction of the amount of the solid-state electrolyte in the composite electrode, thus, enabling higher mass loading of active materials. Here, we propose the synthesis and use of lithium titanium chloride (Li3TiCl6) as room-temperature ionic conductive (i.e., 1.04 mS cm-1 at 25 °C) and compressible active materials for all-solid-state Li-based batteries. When a composite positive electrode comprising 95 wt.% of Li3TiCl6 is tested in combination with a Li-In alloy negative electrode and Li6PS5Cl/Li2ZrCl6 solid-state electrolytes, an initial discharge capacity of about 90 mAh g-1 and an average cell discharge voltage of about 2.53 V are obtained. Furthermore, a capacity retention of more than 62% is attainable after 2500 cycles at 92.5 mA g-1 and 25 °C with an applied external pressure of 1.5 tons. We also report the assembly and testing of a "single Li3TiCl6" cell where this chloride material is used as the solid electrolyte, negative electrode and positive electrode.

7.
Oxid Med Cell Longev ; 2022: 7449941, 2022.
Article En | MEDLINE | ID: mdl-36338346

Iron-sulfur clusters are ancient cofactors that play crucial roles in myriad cellular functions. Recent studies have shown that iron-sulfur clusters are closely related to the mechanisms of multiple cell death modalities. In addition, numerous previous studies have demonstrated that iron-sulfur clusters play an important role in the development and treatment of cancer. This review first summarizes the close association of iron-sulfur clusters with cell death modalities such as ferroptosis, cuprotosis, PANoptosis, and apoptosis and their potential role in cancer activation and drug resistance. This review hopes to generate new cancer therapy ideas and overcome drug resistance by modulating iron-sulfur clusters.


Iron-Sulfur Proteins , Neoplasms , Humans , Iron/metabolism , Iron-Sulfur Proteins/metabolism , Sulfur/metabolism , Apoptosis
8.
Comput Math Methods Med ; 2022: 1770531, 2022.
Article En | MEDLINE | ID: mdl-36238476

Results: The DSC, PPV, and sensitivity of our combined model are 0.94, 0.93, and 0.94, respectively, with better segmentation performance. And we compare with the segmentation frameworks of other papers and find that our combined model can make accurate segmentation of breast tumors. Conclusion: Our method can adapt to the variability of breast tumors and segment breast tumors accurately and efficiently. In the future, it can be widely used in clinical practice, so as to help the clinic better formulate a reasonable diagnosis and treatment plan for breast cancer patients.


Breast Neoplasms , Deep Learning , Algorithms , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Humans , Image Processing, Computer-Assisted/methods , Ki-67 Antigen , Magnetic Resonance Imaging/methods
9.
Nano Lett ; 22(8): 3457-3464, 2022 Apr 27.
Article En | MEDLINE | ID: mdl-35435693

The electrode-electrolyte contact issue within the composite electrode layer is a grand challenge for all-solid-state Li batteries. In order to achieve cycling performances comparable to Li-ion batteries based on liquid electrolyte, the aforementioned solid-solid contact not only needs to be sufficiently thorough but also must tolerate repeated cycling. Simultaneously meeting both requirements is rather challenging. Here, we discover that epitaxy may effectively overcome such bottlenecks even when the electrode undergoes repeated phase transitions during cycling. Through epitaxial growth, the perovskite Li0.33La0.56TiO3 solid electrolyte was found capable of forming atomically intimate contact with both the spinel Li4Ti5O12 and rock-salt Li7Ti5O12. In contrast to conventional expectations, such epitaxial interfaces can also survive repeated spinel-to-rock-salt phase transitions. Consequently, the Li4Ti5O12-Li0.33La0.56TiO3 composite electrode based on epitaxial solid-solid contact delivers not only a rate capability comparable to that of the surry-cast one with solid-liquid contact but also an excellent long-term cycling stability.

10.
Immunopharmacol Immunotoxicol ; 44(4): 492-499, 2022 Aug.
Article En | MEDLINE | ID: mdl-35332839

BACKGROUND: Doxorubicin (DOX) resistance remains a major challenge for adriamycin-based treatment of breast cancer (BC). Transforming growth factor ß (TGF-ß) has been reported to contribute to drug resistance. Although the role of long noncoding RNAs (LncRNAs) in cancer progression has been widely studied, its effect on TGF-ß-induced resistance remains limited. This study aimed to investigate the role of LncRNA on the regulation of TGF-ß-induced drug resistance. METHODS: Cell counting kit-8 (CCK-8) and an EdU assay were used to evaluate cell viability and proliferation. The level of LncRNA mRNA expression in BC tissues and cells was examined by quantitative real-time PCR. Changes in epithelial-mesenchymal transition (EMT) and cell apoptosis were quantified by Western blot and immunofluorescence. RESULTS: TGF-ß induced EMT and promoted DOX resistance. LncRNA urothelial carcinoma-associated 1(lncRNA UCA1) associated with TGF-ß was upregulated in BC cells and tissues. LncRNA UCA1 silencing enhanced sensitivity to DOX decreased cellular proliferation and increased apoptosis in BC cells. The effect of TGF-ß on EMT and DOX resistance disappeared following a lncRNA UCA1 knockdown. CONCLUSIONS: These findings suggest that lncRNA-UCA1, a mediator of TGF-ß signaling, could predispose BC patients to EMT and DOX resistance.


Breast Neoplasms , Doxorubicin , Drug Resistance, Neoplasm , RNA, Long Noncoding , Apoptosis , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Doxorubicin/pharmacology , Female , Gene Expression Regulation, Neoplastic , Humans , RNA, Long Noncoding/genetics , Transforming Growth Factor beta/metabolism , Up-Regulation
11.
Nat Commun ; 12(1): 4410, 2021 Jul 20.
Article En | MEDLINE | ID: mdl-34285207

Li-ion-conducting chloride solid electrolytes receive considerable attention due to their physicochemical characteristics such as high ionic conductivity, deformability and oxidative stability. However, the raw materials are expensive, and large-scale use of this class of inorganic superionic conductors seems unlikely. Here, a cost-effective chloride solid electrolyte, Li2ZrCl6, is reported. Its raw materials are several orders of magnitude cheaper than those for the state-of-the-art chloride solid electrolytes, but high ionic conductivity (0.81 mS cm-1 at room temperature), deformability, and compatibility with 4V-class cathodes are still simultaneously achieved in Li2ZrCl6. Moreover, Li2ZrCl6 demonstrates a humidity tolerance with no sign of moisture uptake or conductivity degradation after exposure to an atmosphere with 5% relative humidity. By combining Li2ZrCl6 with the Li-In anode and the single-crystal LiNi0.8Mn0.1Co0.1O2 cathode, we report a room-temperature all-solid-state cell with a stable specific capacity of about 150 mAh g-1 for 200 cycles at 200 mA g-1.

12.
Nat Commun ; 11(1): 1828, 2020 Apr 14.
Article En | MEDLINE | ID: mdl-32286287

In order to fully understand the lithium-ion transport mechanism in solid electrolytes for batteries, not only the periodic lattice but also the non-periodic features that disrupt the ideal periodicity must be comprehensively studied. At present only a limited number of non-periodic features such as point defects and grain boundaries are considered in mechanistic studies. Here, we discover an additional type of non-periodic feature that significantly influences ionic transport; this feature is termed a "single-atom-layer trap" (SALT). In a prototype solid electrolyte Li0.33La0.56TiO3, the single-atom-layer defects that form closed loops, i.e., SALTs, are found ubiquitous by atomic-resolution electron microscopy. According to ab initio calculations, these defect loops prevent large volumes of materials from participating in ionic transport, and thus severely degrade the total conductivity. This discovery points out the urgency of thoroughly investigating different types of non-periodic features, and motivates similar studies for other solid electrolytes.

...