Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 249: 120992, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38096724

RESUMEN

With the growing complexity and severity of water pollution, it has become increasingly challenging to effectively remove contaminants or inactivate microorganisms just by traditional chemical oxidants such as O3, chlorine, Fe(VI) and Mn(VII). Up till now, numerous studies have indicated that these oxidants in combination with peroxides (i.e., hydrogen peroxide (H2O2), peroxymonosulfate (PMS), peracetic acid (PAA) and periodate (PI)) exhibited excellent synergistic oxidation. This paper provided a comprehensive review on the combination of aforementioned oxidant-peroxide applied in water and wastewater treatments. From one aspect, the paper thoroughly elucidated the synergy mechanism of each oxidant-peroxide combination in turn. Among these combinations, H2O2 or PMS generally performed as the activator of four traditional oxidants above to accelerate reactive species generation and therein various reaction mechanisms, including electron transfer, O atom abstraction and oxo ligand substitution, were involved. In addition, although neither PAA nor PI was able to directly activate Fe(VI) and Mn(VII), they could act as the stabilizer of intermediate reactive iron/manganese species to improve the latter utilization efficiency. From another aspect, this paper summarized the influence of water quality parameters, such as pH, inorganic ions and natural organic matter (NOM), on the oxidation performance of most combined systems. Finally, this paper highlighted knowledge gaps and identified areas that require further research.


Asunto(s)
Oxidantes , Contaminantes Químicos del Agua , Oxidantes/química , Peróxido de Hidrógeno/química , Aguas Residuales , Peróxidos/química , Oxidación-Reducción , Ácido Peracético
2.
Water Res ; 226: 119265, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36279614

RESUMEN

Studies that promote chemical oxidation by permanganate (MnO4-; Mn(VII)) as a viable technology for water treatment and environmental purification have been quickly accumulating over the past decades. Various methods to activate Mn(VII) have been proposed and their efficacy in destructing a wide range of emerging organic contaminants has been demonstrated. This article aims to present a state-of-art review on the development of Mn(VII) activation methods, including photoactivation, electrical activation, the addition of redox mediators, carbonaceous materials, and other chemical agents, with a particular focus on the potential activation mechanism and critical influencing factors. Different reaction mechanisms are involved in activated Mn(VII) oxidation processes, including the generation of reactive intermediates derived from Mn(VII) (e.g., Mn(III), Mn(V), and Mn(VI)) or activators (e.g., intermediates of redox mediators and Ru catalysts), reactive oxygen species (ROS) (e.g., •OH, O2•-, and 1O2), as well as electron transfer from organics to Mn(VII) via catalysts as the electron mediator. Except •OH that is generated as one of co-oxidants in UV/Mn(VII) process, other reactive species are relatively mild oxidants, which are more selective toward organic substrates and highly tolerant toward various water matrices (e.g., inorganic ions and natural organic matter) compared to strongly oxidizing radical species. Therefore, activated Mn(VII) oxidation processes show a good prospect for efficient removal of target contaminants in natural and complex environmental matrices. However, there are some disputes about the dominant reactive species generated in these processes, and their identification methods may be not appropriate, causing serious confusion in the mechanistic understanding. So, further efforts are still needed to fill the knowledge gap and also to address the application challenges of these technologies.


Asunto(s)
Compuestos de Manganeso , Purificación del Agua , Óxidos , Oxidación-Reducción , Purificación del Agua/métodos , Oxidantes , Catálisis
3.
Water Res ; 223: 119014, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36041367

RESUMEN

Multiple reactive intermediates have been proposed to be involved in peroxydisulfate (PDS) activation by zerovalent iron (ZVI), including sulfate radical (SO4·-) produced via iron-oxide shell mediated electron transfer, ferryl ion species (Fe(IV)) formed from Fe(II)-PDS interaction, and hydroxyl radical (·OH) generated by ZVI aerobic oxygenation. In this study, evolution of the relative role of these intermediates in microscale and nanoscale ZVI (mZVI vs. nZVI) activated PDS processes is comparatively investigated by using a methyl phenyl sulfoxide (PMSO) probe that selectively reacts with Fe(IV) to produce methyl phenyl sulfone (PMSO2). Interestingly, during PMSO transformation by mZVI/PDS process, yields of PMSO2 (η(PMSO2)) exhibit three-stage behavior that they first increase to a maximum (∼80% but lower than 100%) (Stage I) and then plateau for a period (Stage II) followed by a decrease phase (Stage III). Accordingly, the relative role of Fe(IV) in PMSO transformation is unceasingly improved in Stage I and subsequently reaches equilibrium with that of free radicals in Stage II, while it finally decreases in Stage III. Similar η(PMSO2) evolution trends are obtained in nZVI/PDS process, except that the η(PMSO2) increase in Stage I is negligible, possibly due to the exceptional fast nZVI dissolution. It was further clarified by tert-butyl alcohol scavenging assay that, in addition to Fe(IV), the free radical involved in Stages I and II is SO4·-, while ·OH was dominant in Stage III. Moreover, studies on O2 effect reveal that ZVI aerobic oxygenation participates in mZVI corrosion during the entire process, while it is only involved in nZVI corrosion when PDS content is reduced to a low concentration, indicating that the reactivities of PDS and O2 are similar in mZVI corrosion, but differ greatly in nZVI corrosion. Additionally, effects of reactant dose and pH on η(PMSO2) evolution are also explored. Dynamics of the relative role of different reactive oxidants should be taken into account in further applications of ZVI/PDS in situ chemical remediation technology considering their different chemistries.


Asunto(s)
Contaminantes Químicos del Agua , Agua , Compuestos Ferrosos , Radical Hidroxilo , Hierro/química , Oxidantes/química , Oxidación-Reducción , Sulfonas , Sulfóxidos , Contaminantes Químicos del Agua/química , Alcohol terc-Butílico
4.
Environ Sci Technol ; 56(12): 8776-8783, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35533403

RESUMEN

In this work, the mechanism of the activation of peroxides by quinones has been investigated through quantum chemical calculations. Hydrogen peroxide (H2O2), peroxomonosulfate (PMS), peracetic acid (PAA), and CH3OOH were chosen as the model peroxides and p-benzoquinone (p-BQ) and tetrachloro-1,4-benzoquinone (TCBQ) as the model quinones. The nucleophilic attack of peroxides can occur on the carbonyl and olefinic carbons of quinones. For p-BQ, the nucleophilic attack of HO2-, CH3OO-, PMS, and PAA might prefer to occur on the carbonyl carbons, which have more positive atomic charges. Then, further transformation could not be induced from the addition of HO2- and CH3OO- to p-BQ. Comparatively, singlet oxygen (1O2) could be generated in the cases of PMS and PAA. For TCBQ, the chlorine atoms cause the olefinic carbons to carry more positive atomic charges, and then, HO2- preferred to add to the olefinic carbons, which might induce the formation of the hydroxyl radical (•OH). The activation of PMS by TCBQ was similar to that by p-BQ, with the kinetical feasibility of 1O2 formation. These findings may provide some theoretical insights into the reaction of peroxides with quinones, especially into the interconnection between the substitutes and the formation of oxygen-centered radicals (e.g., •OH) and 1O2.


Asunto(s)
Peróxidos , Quinonas , Peróxido de Hidrógeno , Oxígeno , Especies Reactivas de Oxígeno , Oxígeno Singlete
5.
Water Res ; 216: 118331, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35358879

RESUMEN

Recently, bisulfite-activated permanganate (MnO4-; Mn(VII)) process has attracted considerable attention as a novel class of advanced oxidation technology for destruction of organic contaminants in water. However, disputes over the underlying activation mechanism as well as reactive species generated in the Mn(VII)/bisulfite system remain for a long period due to the fairly complex chemistry involved in this system. This article aims to present a critical review on scientific development of the Mn(VII)/bisulfite system, with particular focus on the generation and contribution of various reactive intermediates. Both reactive manganese species (RMnS) (i.e., soluble Mn(III), Mn(V), and Mn(VI)) and radical species (primarily SO4•-) are identified as the oxidizing components responsible for enhanced degradation of organic contaminants by the Mn(VII)/bisulfite system. Bisulfite plays a dual role of being an activating agent for reactive intermediates generation and acting as a complexing agent to stabilize RMnS. Solution chemistry (e.g., the [Mn(VII)]/[bisulfite] molar ratio, solution pH, the type of contaminants, ligands, and water matrix components) greatly impacts the generation and consumption of RMnS and radicals, thus influencing the degradation kinetics and pathways of organics. Particularly, dissolved oxygen (DO) is a vital factor for driving the oxidation of organics since the absence of DO can block the generation of SO4•- and meantime causes the consumption of RMnS by excess SO3•- as a strong reductant. Interestingly, ferrate (FeO42-, Fe(VI)) and hexavalent chromium (CrO42-/HCrO4-, Cr(VI)) that are high-valent metal oxyanions analogous to Mn(VII) can be activated by bisulfite via a similar pathway (i.e. both high-valent metal-oxo intermediates and reactive radicals are involved). Furthermore, key knowledge gaps are identified and future research needs are proposed to address the potential challenges encountered in practical application of the Mn(VII)/bisulfite oxidation technology.


Asunto(s)
Contaminantes Químicos del Agua , Agua , Descontaminación , Compuestos de Manganeso , Oxidación-Reducción , Estrés Oxidativo , Óxidos , Sulfitos , Contaminantes Químicos del Agua/análisis
6.
Sci Total Environ ; 823: 153679, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35131246

RESUMEN

This review summarizes major findings over the last decade related to N-nitrosodimethylamine (NDMA) formed upon ozonation, which was regarded as highly toxic and carcinogenic disinfection by-products. The reaction kinetics, chemical yields and mechanisms were assessed for the ozonation of potential precursors including dimethylamine (DMA), N,N-dimethylsulfamide, hydrazines, N-containing water and wastewater polymers, dyes containing a dimethylamino function, N-functionalized carbon nanotubes, guanidine, and phenylurea. The effects of bromide on the NDMA formation during ozonation of different types of precursors were also discussed. The mechanism for NDMA formation during ozonation of DMA was re-summarized and new perspectives were proposed to assess on this mechanism. Effect of hydroxyl radicals (•OH) on NDMA formation during ozonation was also discussed due to the noticeable oxidation of NDMA by •OH. Surrogate parameters including nitrate formation and UV254 after ozonation may be useful parameters to estimate NDMA formation for practical application. The strategies for NDMA formation control were proposed through improving the ozonation process such as ozone/hydrogen peroxide, ozone/peroxymonosulfate and catalytic ozonation process based on membrane pores aeration (MEMBRO3X).


Asunto(s)
Nanotubos de Carbono , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Dimetilnitrosamina , Aguas Residuales , Contaminantes Químicos del Agua/análisis
7.
Environ Sci Technol ; 56(3): 1492-1509, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007064

RESUMEN

High-valent iron(IV)-oxo complexes are of great significance as reactive intermediates implicated in diverse chemical and biological systems. The aqueous iron(IV)-oxo complex (FeaqIVO2+) is the simplest but one of the most powerful ferryl ion species, which possesses a high-spin state, high reduction potential, and long lifetime. It has been well documented that FeaqIVO2+ reacts with organic compounds through various pathways (hydrogen-atom, hydride, oxygen-atom, and electron transfer as well as electrophilic addition) at moderate reaction rates and show selective reactivity toward inorganic ions prevailing in natural water, which single out FeaqIVO2+ as a superior candidate for oxidative water treatment. This review provides state-of-the-art knowledge on the chemical properties and oxidation mechanism and kinetics of FeaqIVO2+, with special attention to the similarities and differences to two representative free radicals (hydroxyl radical and sulfate radical). Moreover, the prospective role of FeaqIVO2+ in Feaq2+ activation-initiated advanced oxidation processes (AOPs) has been intensively investigated over the past 20 years, which has significantly challenged the conventional recognition that free radicals dominated in these AOPs. The latest progress in identifying the contribution of FeaqIVO2+ in Feaq2+-based AOPs is thereby reviewed, highlighting controversies on the nature of the reactive oxidants formed in several Feaq2+ activated peroxide and oxyacid processes. Finally, future perspectives for advancing the evaluation of FeaqIVO2+ reactivity from an engineering viewpoint are proposed.


Asunto(s)
Oxidantes , Purificación del Agua , Compuestos Ferrosos , Radicales Libres , Hierro , Oxidantes/química , Oxidación-Reducción , Estrés Oxidativo , Oxígeno/química , Estudios Prospectivos
8.
Water Res ; 176: 115725, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32222545

RESUMEN

Sulfate radical-based advanced oxidation processes (SR-AOPs) show a good prospect for effective elimination of organic contaminants in water due to the powerful oxidation capability and good adaptability of sulfate radical (SO4•-). However, great concerns have been raised on occurrence of the carcinogenic byproduct bromate (BrO3-) in SR-AOPs. The present article aims to provide a critical review on BrO3- formation during bromine (Br)-containing water oxidation by various SR-AOPs. Potential reaction mechanisms are elaborated, mainly involving the sequential oxidation of bromide (Br-) by SO4•- to Br-containing radicals (e.g., bromine atom (Br•)) and then to hypobromous acid/hypobromite (HOBr/OBr-), which acts as the requisite intermediate for BrO3- formation. Some key influencing factors on BrO3- formation are discussed. Particularly, dissolved organic matter (DOM) as a component ubiquitously present in aquatic environments shows a significant suppression effect on BrO3- formation, primarily attributed to the reduction of Br• by DOM to Br-. The reaction of Br• with DOM can hardly produce organic brominated byproducts, while their formation is mainly due to the bromination of HOBr/OBr- generated through nonradical pathways such as the direct reaction of Br- with oxidants (e.g., peroxymonosulfate (PMS)) or other reactive species derived from catalytic activators (e.g., Co(III) in the Co(II)/PMS process). The debromination of brominated pollutants during their oxidation by SO4•- results in the release of Br-, which, however, is not further transformed to BrO3- until coexisting organic matters are mineralized nearly completely. Furthermore, possible strategies for control of BrO3- formation in SR-AOPs as well as the future research needs are proposed.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Bromatos , Bromuros , Oxidación-Reducción , Sulfatos
9.
Chemosphere ; 248: 126000, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32007774

RESUMEN

Recently, the technology for the remediation of Cr(VI) pollutant via bisulfite has been found to be effective for fast elimination of co-contaminants especially in acidic solution, where free radicals (i.e., sulfate and/or hydroxyl radicals) are proposed to act as dominant oxidants. Here, it was demonstrated that high-valent Cr intermediate played a primary role in the Cr(VI)/bisulfite system through applying methyl phenyl sulfoxide (PMSO) as a probe. PMSO was effectively transformed in the Cr(VI)/bisulfite system with appreciable generation of methyl phenyl sulfone (PMSO2) product, while PMSO was oxidized by free radicals to hydroxylated and/or polymeric products rather than PMSO2. The involvement of high-valent Cr species was further supported by the formation of 18O-labeled PMSO2 in 18O labeling experiments, where the incorporation of 18O from solvent water H218O into PMSO2 was likely resulted from competitive oxygen exchange of Cr-oxo species with water. The relative contribution of high valent Cr species versus free radicals was evaluated based on the yield of PMSO2, which was dependent on the solution chemistry such as [Cr(VI)]:[bisulfite] ratio and dissolved oxygen. This work advances the understanding of chromium chemistry involved in the Cr(VI)/bisulfite system. These findings have important implications on the application of this "waste control by waste" technology for environmental decontamination.


Asunto(s)
Cromo/química , Contaminantes Ambientales/química , Sulfitos/química , Derivados del Benceno , Radicales Libres , Radical Hidroxilo , Modelos Químicos , Oxidantes , Oxidación-Reducción , Sulfatos
10.
Environ Sci Technol ; 53(15): 9054-9062, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31282149

RESUMEN

Recent studies have reported that toxic nitrated aromatic products are generated during treatment of phenolic compounds by thermally activated peroxydisulfate (thermal/PDS) in the presence of nitrite (NO2-). This work explored the potential of carbon materials on controlling the formation of nitrated aromatic products using phenol as a model compound. In the presence of selected carbon materials including diverse carbon nanotubes (CNT) and powdered activated carbon (PAC), the transformation kinetics of phenol was significantly enhanced, primarily attributed to nonradical activation of PDS by carbon materials. Nitrophenols (NPs) including 2-NP and 4-NP were formed in phenol oxidation by the thermal/PDS/NO2- process, due to the reaction of phenol with reactive nitrogen species generated from NO2- oxidation. The addition of carbon materials obviously inhibited NPs formation under various experimental conditions. The bonding of nitro groups on the CNT surface was clearly confirmed by means of various characterizations, probably resulting from the competitive reaction of reactive nitrogen species with CNT vs phenol. The controlling effect of carbon materials was also verified in the cases of other phenolic compounds. Therefore, the addition of carbon materials may be a promising approach to control the formation of undesirable nitrated byproducts by the thermal/PDS process in the presence of NO2-.


Asunto(s)
Nanotubos de Carbono , Nitritos , Nitratos , Óxidos de Nitrógeno , Oxidación-Reducción , Fenoles
11.
Chemosphere ; 221: 270-277, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30640010

RESUMEN

In this study, the degradation kinetics of iopamidol (IPM) by three different UV-based oxidation processes including UV/hydrogen peroxide (H2O2), UV/persulfate (PDS) and UV/chlorine (NaClO) were examined and the potential formation of iodinated disinfection byproducts (I-DBPs) in these processes followed by sequential chlorination was comparatively investigated. Increasing pH led to the decrease of IPM degradation rate in UV/NaClO, while it showed negligible impact in UV/PDS and UV/H2O2. Common background constituents such as chloride ions (Cl-), carbonate (HCO3-) and natural organic matter (NOM) inhibited IPM degradation in UV/H2O2 and UV/PDS, while IPM degradation in UV/NaClO was only suppressed by NOM but not Cl- and HCO3-. The differences in transformation products of IPM treated by hydroxyl radical (HO*), sulfate radical (SO4*-), as well as Cl2*- and ClO* generated in these processes, respectively, were also analyzed. The results suggested that hydroxyl radical (HO*) preferred to form hydroxylated derivatives. Sulfate radical (SO4*-) preferred to oxidize amino group of IPM to nitro group, while Cl2*- and ClO* favored the generation of chlorine-containing products. Moreover, specific I-DBPs (i.e., iodoform (IF) and monoiodacetic acid (MIAA)) were detected in the three processes followed by chlorination. The addition of NOM had little effect on IF formation of three processes, while MIAA formation decreased in all processes except UV/H2O2. Given that the formation of I-DBPs in UV/NaClO was less than those formed in the other two processes, UV/NaClO seems to be a more promising strategy for effectively removing IPM with alleviation of I-DBPs in treated water effluents.


Asunto(s)
Cloro , Desinfección/métodos , Halogenación , Yopamidol/química , Rayos Ultravioleta , Contaminantes Químicos del Agua/química , Cinética , Oxidación-Reducción , Purificación del Agua/métodos
12.
Water Res ; 149: 543-552, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30502740

RESUMEN

The frequent detection of propranolol, a widely used ß-blocker, in wastewater effluents and surface waters has raised serious concern, due to its adverse effects on organisms. UV/hydrogen peroxide (UV/H2O2) and UV/persulfate (UV/PDS) processes are efficient in eliminating propranolol in various waters, but the formation of oxidation products in these processes, as well as the assessment of their toxicity, has not been systematically addressed. In this study, we identified and compared transformation products of propranolol produced by hydroxyl radical (•OH) and sulfate radical (SO4•-). The electrostatic attraction enhances the reaction between SO4•- and the protonated form of propranolol, while •OH shows non-selectivity toward both protonated and neutral propranolol species. The hydroxylation of propranolol by •OH occurs at either amine moiety or naphthalene group while SO4•- favors the oxidation of the electron-rich naphthalene group. Further oxidation by •OH and SO4•- results in ring-opening products. Bicarbonate and chloride exert no effect on propranolol degradation. The generation of CO3•- and Cl-containing radicals is favorable to oxidizing naphthalene group. The acute toxicity assay of Vibrio fischeri suggests that SO4•- generates more toxic products than •OH, while CO3•- and Cl-containing radicals produce similar toxicity as SO4•-. High concentrations of bicarbonate in UV/H2O2 increase the toxicity of treated solution.


Asunto(s)
Propranolol , Contaminantes Químicos del Agua , Peróxido de Hidrógeno , Cinética , Oxidación-Reducción , Sulfatos , Rayos Ultravioleta
13.
Environ Sci Technol ; 52(19): 11276-11284, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30207707

RESUMEN

It is well documented that the traditional Fenton reagent (i.e., the combination of Fe(II) and H2O2) produces hydroxyl radical (•OH) under acidic conditions, while at near-neutral pH the reactive intermediate converts to ferryl ion (Fe(IV)) that can oxidize sulfoxides to produce corresponding sulfones, markedly differing from their •OH-induced products. However, it remains unclear whether Fe(IV) is generated in the Fe(II) activated peroxydisulfate (PDS) process, where sulfate radical (SO4•-) is long recognized as the dominant intermediate in literature. Here we demonstrated that SO4•- oxidized methyl phenyl sulfoxide (PMSO, a model sulfoxide) to produce biphenyl compounds rather than methyl phenyl sulfone (PMSO2). Interestingly, the formation of PMSO2 was observed when PMSO was treated by the Fe(II)/PDS system over a wide pH range, and the yields of PMSO2 were quantified to be ∼100% at acidic pH 3-5. The identification of Fe(IV) in the Fe(II)/PDS system could also reasonably explain the literature results on alcohol scavenging effect and ESR spectra analysis. Further, a Fe(IV)-based kinetic model was shown to accurately simulate the experimental data. This work urges re-evaluation of the Fe(II)/PDS system for environmental decontamination, given that Fe(IV) would have different reactivity toward environmental contaminants compared with SO4•- and/or •OH.


Asunto(s)
Compuestos Ferrosos , Peróxido de Hidrógeno , Descontaminación , Radical Hidroxilo , Oxidación-Reducción , Sulfatos
14.
Chemosphere ; 208: 559-568, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29890494

RESUMEN

Our recent study has demonstrated that iodide (I-) can be easily and almost entirely oxidized to hypoiodous acid (HOI) but not to iodate by nonradical activation of peroxydisulfate (PDS) in the presence of a commercial carbon nanotube (CNT). In this work, the oxidation kinetics of phenolic compounds by the PDS/CNT system in the presence of I- were examined and potential formation of iodinated aromatic products was explored. Experimental results suggested that I- enhanced the transformation of six selected substituted phenols, primarily attributed to the generation of HOI that was considerably reactive toward these phenolic compounds. More significant enhancement was obtained at higher I- concentrations or lower pH values, while the change of PDS or CNT dosages exhibited a slight impact on the enhancing effect of I-. Product analyses with liquid chromatography tandem mass spectrometry clearly revealed the production of iodinated aromatic products when p-hydroxybenzoic acid (p-HBA, a model phenol) was treated by the PDS/CNT/I- system in both synthetic and real waters. Their formation pathways probably involved the substitution of HOI on aromatic ring of p-HBA, as well as the generation of iodinated p-HBA phenoxyl radicals and subsequent coupling of these radicals. Given the considerable toxicity and harmful effects of these iodinated aromatic products, particular attention should be paid when the novel PDS/CNT oxidation technology is applied for treatment of phenolic contaminants in iodide-containing waters.


Asunto(s)
Yoduros/farmacología , Nanotubos de Carbono/química , Fenoles/química , Contaminantes Químicos del Agua/química , Halogenación , Yodatos/química , Yoduros/química , Compuestos de Yodo , Cinética , Oxidación-Reducción , Purificación del Agua/métodos
15.
Environ Sci Technol ; 51(18): 10718-10728, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28806069

RESUMEN

This work demonstrated that bromophenols (BrPs) could be readily oxidized by peroxydisulfate (PDS) activated by a commercial carbon nanotube (CNT), while furfuryl alcohol (a chemical probe for singlet oxygen (1O2)) was quite refractory. Results obtained by radical quenching experiments, electron paramagnetic resonance spectroscopy, and Fourier transform infrared spectroscopy further confirmed the involvement of nonradical PDS-CNT complexes rather than 1O2. Bicarbonate and chloride ion exhibited negligible impacts on BrPs degradation by the PDS/CNT system, while a significant inhibitory effect was observed for natural organic matter. The oxidation of BrPs was influenced by solution pH with maximum rates occurring at neutral pH. Linear free energy relationships (LFERs) were established between the observed pseudo-first-order oxidation rates of various substituted phenols and the classical descriptor variables (i.e., Hammett constant σ+, and half-wave oxidation potential E1/2). Products analyses by liquid chromatography tandem mass spectrometry clearly showed the formation of hydroxylated polybrominated diphenyl ethers and hydroxylated polybrominated biphenyls on CNT surface. Their formation pathway possibly involved the generation of bromophenoxyl radicals from BrPs one-electron oxidation and their subsequent coupling reactions. These results suggest that the novel nonradical PDS/CNT oxidation technology is a good alternative for selectively eliminating BrPs with alleviating toxic byproducts in treated water effluent.


Asunto(s)
Compuestos de Bromina/química , Nanotubos de Carbono , Fenoles/química , Cinética , Oxidación-Reducción , Bifenilos Polibrominados , Purificación del Agua
17.
Environ Sci Technol ; 51(1): 479-487, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27982571

RESUMEN

In this study, we interestingly found that peroxydisulfate (PDS) could be activated by a commercial multiwalled carbon nanotube (CNT) material via a nonradical pathway. Iodide (I-) was quickly and almost completely oxidized to hypoiodous acid (HOI) in the PDS/CNT system over the pH range of 5-9, but the further transformation to iodate (IO3-) was negligible. A kinetic model was proposed, which involved the formation of reactive PDS-CNT complexes, and then their decomposition into sulfate anion (SO42-) via inner electron transfer within the complexes or by competitively reacting with I-. Several influencing factors (e.g., PDS and CNT dosages, and solution pH) on I- oxidation kinetics by this system were evaluated. Humic acid (HA) decreased the oxidation kinetics of I-, probably resulting from its inhibitory effect on the interaction between PDS and CNT to form the reactive complexes. Moreover, adsordable organic iodine compounds (AOI) as well as specific iodoform and iodoacetic acid were appreciably produced in the PDS/CNT/I- system with HA. These results demonstrate the potential risk of producing toxic iodinated organic compounds in the novel PDS/CNT oxidation process developed very recently, which should be taken into consideration before its practical application in water treatment.


Asunto(s)
Yoduros/química , Nanotubos de Carbono , Yodatos/química , Oxidación-Reducción , Contaminantes Químicos del Agua , Purificación del Agua
18.
Water Res ; 96: 12-21, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27016634

RESUMEN

The transformation efficiency and products of an odorous compound 2,4,6-trichloroanisole (TCA) at the wavelength of 254 nm in the presence of persulfate were investigated for the first time. The effects of water matrix (i.e., natural organic matter (NOM), pH, carbonate/bicarbonate (HCO3(-)/CO3(2-)), and chloride ions (Cl(-))) were evaluated. The second order rate constant of TCA reacting with sulfate radical (SO4(-)) was determined to be (3.72 ± 0.10) × 10(9) M(-1) s(-1). Increasing dosage of persulfate increased the observed pseudo-first-order rate constant for TCA degradation (kobs), and the contribution of SO4(-) to TCA degradation was much higher than that of HO at each experimental condition. Degradation rate of TCA decreased with pH increasing from 4.0 to 9.0, which could be explained by the lower radical scavenging effect of dihydrogen phosphate than hydrogen phosphate in acidic condition (pH < 6). NOM significantly decreased kobs due to the effects of radical scavenging and UV absorption with the former one being dominant. kobs decreased from 2.32 × 10(-3) s(-1) to 0.92 × 10(-3) s(-1) with the CO3(2-)/HCO3(-) concentration increased from 0.5 mM to 10 mM in the UV/persulfate process, while kobs slightly decreased from 2.54 × 10(-3) s(-1) in the absence of Cl(-) to 2.10 × 10(-3) s(-1) in the presence of 10 mM Cl(-). Most of these kinetic results could be described by a steady-state kinetic model. Furthermore, liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry at powerful precursor ion scan approach was used to selectively detect oxidation products of TCA. It was found that 2,4,6-trichorophenol (TCP) was the major oxidation product (i.e., the initial yield of TCP was above 90%). The second order rate constant between TCP and SO4(-) was estimated to be (4.16 ± 0.20) × 10(9) M(-1) s(-1). In addition, three products (i.e., 2,6-dichloro-1,4-benzoquinone and two aromatic ring-opening products) were detected in the reaction of TCP with SO4(-), which also appeared in the oxidation of TCA in the UV/persulfate process. A tentative pathway was proposed, where the initial one-electron oxidation of TCA by SO4(-) and further reactions (e.g., ipso-hydroxylation and aromatic ring-cleavage) of the formed cation intermediate TCA were involved.


Asunto(s)
Sulfatos/química , Contaminantes Químicos del Agua/química , Benzoquinonas , Carbonatos , Concentración de Iones de Hidrógeno , Cinética , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...