Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Genet Genomics ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950857

RESUMEN

Legume symbiotic nitrogen fixation (SNF) is suppressed by inorganic N in the soil. High N inhibition of nitrogenase activity is associated with the deprivation of carbon allocation and metabolism in nodules. However, the underlying molecular mechanisms remain unclear. Here, we identify GmCIN1 which encodes a cytosolic invertase, as a gateway for the N-tuning of sucrose utilization in nodules. GmCIN1 is enriched in mature soybean nodules and its expression is regulated by nitrogen status. The knockout of GmCIN1 using genome editing partially mimicks the inhibitory effects of N on nitrogenase activity and sugar content and the impact of high N on nodule transcriptomes. This indicates that GmCIN1 partially mediates the high N inhibition of nodule activity. Moreover, ChIP-qPCR and EMSA reveal that SNAP1/2 transcription factors directly bind to the GmCIN1 promoter. In addition, SNAP1/2 may be involved in the repression of GmCIN1 expression in mature nodules at high N concentrations. Our findings provide insights into the involvement of the transcriptional tuning of C metabolism genes by N-signaling modulators in the N-induced inhibition of nitrogenase activity.

2.
aBIOTECH ; 5(2): 196-201, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38974864

RESUMEN

Phytic acid (PA) in grain seeds reduces the bioavailability of nutrient elements in monogastric animals, and an important objective for crop seed biofortification is to decrease the seed PA content. Here, we employed CRISPR/Cas9 to generate a PA mutant population targeting PA biosynthesis and transport genes, including two multi-drug-resistant protein 5 (MRP5) and three inositol pentose-phosphate kinases (IPK1). We characterized a variety of lines containing mutations on multiple IPK and MRP5 genes. The seed PA was more significantly decreased in higher-order mutant lines with multiplex mutations. However, such mutants also exhibited poor agronomic performance. In the population, we identified  two lines carrying single mutations in ipk1b and ipk1c, respectively. These mutants exhibited moderately reduced PA content, and regular agronomic performance compared to the wild type. Our study indicates that moderately decreasing PA by targeting single GmIPK1 genes, rather than multiplex mutagenesis toward ultra-low PA, is an optimal strategy for low-PA soybean with a minimal trade-off in yield performance. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00158-4.

3.
Dev Cell ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39053471

RESUMEN

Symbiotic nodules comprise two classes, indeterminate and determinate, defined by the presence/absence of apical meristem and developmental zonation. Why meristem and zonation are absent from determinate nodules remains unclear. Here, we define cell types in developing soybean nodules, highlighting the undifferentiated infection zones and differentiated nitrogen-fixation zones. Auxin governs infection zone maintenance. GRETCHEN HAGEN 3 (GH3) enzymes deactivate auxin by conjugation and promote cell differentiation. gh3 mutants increased undifferentiated cells and enlarged infection zones. The central symbiosis-transcription factor NIN2a activates GH3.1 to reduce auxin levels and facilitates cell differentiation. High auxin promotes NIN2a protein accumulation and enhances signaling, further deactivating auxin and depleting infection zones. Our findings shed light on the NIN2a-GH3-auxin module that drives soybean nodule cell differentiation. This study challenges our understanding of determinate nodule development and proposes that the regulation of nodule zonation offers valuable insights into broader mechanisms of cell differentiation across plant species.

4.
Plant J ; 119(2): 783-795, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38701020

RESUMEN

Symbiotic nitrogen fixation is an energy-intensive process, to maintain the balance between growth and nitrogen fixation, high concentrations of nitrate inhibit root nodulation. However, the precise mechanism underlying the nitrate inhibition of nodulation in soybean remains elusive. In this study, CRISPR-Cas9-mediated knockout of GmNLP1 and GmNLP4 unveiled a notable nitrate-tolerant nodulation phenotype. GmNLP1b and GmNLP4a play a significant role in the nitrate-triggered inhibition of nodulation, as the expression of nitrate-responsive genes was largely suppressed in Gmnlp1b and Gmnlp4a mutants. Furthermore, we demonstrated that GmNLP1b and GmNLP4a can bind to the promoters of GmNIC1a and GmNIC1b and activate their expression. Manipulations targeting GmNIC1a and GmNIC1b through knockdown or overexpression strategies resulted in either increased or decreased nodule number in response to nitrate. Additionally, transgenic roots that constitutively express GmNIC1a or GmNIC1b rely on both NARK and hydroxyproline O-arabinosyltransferase RDN1 to prevent the inhibitory effects imposed by nitrate on nodulation. In conclusion, this study highlights the crucial role of the GmNLP1/4-GmNIC1a/b module in mediating high nitrate-induced inhibition of nodulation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max , Nitratos , Proteínas de Plantas , Nodulación de la Raíz de la Planta , Nodulación de la Raíz de la Planta/genética , Nitratos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Glycine max/fisiología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Simbiosis , Fijación del Nitrógeno
5.
Nat Plants ; 10(5): 736-742, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38724696

RESUMEN

Symbiotic nitrogen fixation in legume nodules requires substantial energy investment from host plants, and soybean (Glycine max (L.) supernodulation mutants show stunting and yield penalties due to overconsumption of carbon sources. We obtained soybean mutants differing in their nodulation ability, among which rhizobially induced cle1a/2a (ric1a/2a) has a moderate increase in nodule number, balanced carbon allocation, and enhanced carbon and nitrogen acquisition. In multi-year and multi-site field trials in China, two ric1a/2a lines had improved grain yield, protein content and sustained oil content, demonstrating that gene editing towards optimal nodulation improves soybean yield and quality.


Asunto(s)
Glycine max , Nodulación de la Raíz de la Planta , Glycine max/genética , Glycine max/metabolismo , Glycine max/microbiología , Nodulación de la Raíz de la Planta/genética , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , Fijación del Nitrógeno/genética , Edición Génica , Mutación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Soja/genética , Proteínas de Soja/metabolismo
6.
BMC Genom Data ; 25(1): 25, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438864

RESUMEN

OBJECTIVES: Soybean is an important feed and oil crop in the world due to its high protein and oil content. China has a collection of more than 43,000 soybean germplasm resources, which provides a rich genetic diversity for soybean breeding. However, the rich genetic diversity poses great challenges to the genetic improvement of soybean. This study reports on the de novo genome assembly of HJ117, a soybean variety with high protein content of 52.99%. These data will prove to be valuable resources for further soybean quality improvement research, and will aid in the elucidation of regulatory mechanisms underlying soybean protein content. DATA DESCRIPTION: We generated a contiguous reference genome of 1041.94 Mb for HJ117 using a combination of Illumina short reads (23.38 Gb) and PacBio long reads (25.58 Gb), with high-quality sequence coverage of approximately 22.44× and 24.55×, respectively. HJ117 was developed through backcross breeding, using Jidou 12 as the recurrent parent and Chamoshidou as the donor parent. The assembly was further assisted by 114.5 Gb Hi-C data (109.9×), resulting in a contig N50 of 19.32 Mb and scaffold N50 of 51.43 Mb. Notably, Core Eukaryotic Genes Mapping Approach (CEGMA) assessment and Benchmarking Universal Single-Copy Orthologs (BUSCO) assessment results indicated that most core eukaryotic genes (97.18%) and genes in the BUSCO dataset (99.4%) were identified, and 96.44% of the genomic sequences were anchored onto twenty pseudochromosomes.


Asunto(s)
Glycine max , Fitomejoramiento , Glycine max/genética , Proteínas de Soja/genética , Benchmarking , China
7.
Mol Plant ; 17(3): 496-508, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38341616

RESUMEN

Soybean is a photoperiod-sensitive short-day crop whose reproductive period and yield are markedly affected by day-length changes. Seed weight is one of the key traits determining the soybean yield; however, the prominent genes that control the final seed weight of soybean and the mechanisms underlying the photoperiod's effect on this trait remain poorly understood. In this study, we identify SW19 as a major locus controlling soybean seed weight by QTL mapping and determine Dt1, an orthologous gene of Arabidopsis TFL1 that is known to govern the soybean growth habit, as the causal gene of the SW19 locus. We showed that Dt1 is highly expressed in developing seeds and regulates photoperiod-dependent seed weight in soybean. Further analyses revealed that the Dt1 protein physically interacts with the sucrose transporter GmSWEET10a to negatively regulate the import of sucrose from seed coat to the embryo, thus modulating seed weight under long days. However, Dt1 does not function in seed development under short days due to its very low expression. Importantly, we discovered a novel natural allelic variant of Dt1 (H4 haplotype) that decouples its pleiotropic effects on seed size and growth habit; i.e., this variant remains functional in seed development but fails to regulate the stem growth habit of soybean. Collectively, our findings provide new insights into how soybean seed development responds to photoperiod at different latitudes, offering an ideal genetic component for improving soybean's yield by manipulating its seed weight and growth habit.


Asunto(s)
Glycine max , Fotoperiodo , Proteínas de Plantas , Semillas , Arabidopsis/metabolismo , Mapeo Cromosómico , Glycine max/genética , Semillas/metabolismo , Sacarosa/metabolismo , Proteínas de Plantas/metabolismo
9.
New Phytol ; 241(1): 209-226, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37881032

RESUMEN

Legume nodulation requires light perception by plant shoots and precise long-distance communication between shoot and root. Recent studies have revealed that TGACG-motif binding factors (GmSTFs) integrate light signals to promote root nodulation; however, the regulatory mechanisms underlying nodule formation in changing light conditions remain elusive. Here, we applied genetic engineering, metabolite measurement, and transcriptional analysis to study soybean (Glycine max) nodules. We clarify a fine-tuning mechanism in response to ultraviolet B (UV-B) irradiation and rhizobia infection, involving GmUVR8-dependent UV-B perception and GmSTF3/4-GmMYB12-GmCHS-mediated (iso)flavonoid biosynthesis for soybean nodule formation. GmUVR8 receptor-perceived UV-B signal triggered R2R3-MYB transcription factors GmMYB12-dependent flavonoid biosynthesis separately in shoot and root. In shoot, UV-B-triggered flavonoid biosynthesis relied on GmUVR8a, b, c receptor-dependent activation of GmMYB12L-GmCHS8 (chalcone synthase) module. In root, UV-B signaling distinctly promotes the accumulation of the isoflavones, daidzein, and its derivative coumestrol, via GmMYB12B2-GmCHS9 module, resulting in hypernodulation. The mobile transcription factors, GmSTF3/4, bind to cis-regulatory elements in the GmMYB12L, GmMYB12B2, and GmCHS9 promoters, to coordinate UV-B light perception in shoot and (iso)flavonoid biosynthesis in root. Our findings establish a novel shoot-to-root communication module involved in soybean nodulation and reveal an adaptive strategy employed by soybean roots in response to UV-B light.


Asunto(s)
Glycine max , Transducción de Señal , Glycine max/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas/genética , Comunicación , Nodulación de la Raíz de la Planta/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Nat Commun ; 14(1): 4711, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543605

RESUMEN

Legumes can utilize atmospheric nitrogen via symbiotic nitrogen fixation, but this process is inhibited by high soil inorganic nitrogen. So far, how high nitrogen inhibits N2 fixation in mature nodules is still poorly understood. Here we construct a co-expression network in soybean nodule and find that a dynamic and reversible transcriptional network underlies the high N inhibition of N2 fixation. Intriguingly, several NAC transcription factors (TFs), designated as Soybean Nitrogen Associated NAPs (SNAPs), are amongst the most connected hub TFs. The nodules of snap1/2/3/4 quadruple mutants show less sensitivity to the high nitrogen inhibition of nitrogenase activity and acceleration of senescence. Integrative analysis shows that these SNAP TFs largely influence the high nitrogen transcriptional response through direct regulation of a subnetwork of senescence-associated genes and transcriptional regulators. We propose that the SNAP-mediated transcriptional network may trigger nodule senescence in response to high nitrogen.


Asunto(s)
Fabaceae , Glycine max , Glycine max/genética , Nitrógeno , Fijación del Nitrógeno/genética , Factores de Transcripción/genética , Nódulos de las Raíces de las Plantas/genética , Simbiosis/fisiología
11.
J Exp Bot ; 74(18): 5820-5839, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37470327

RESUMEN

The gene networks surrounding Nod factor receptors that govern the symbiotic process between legumes and rhizobia remain largely unexplored. Here, we identify 13 novel GmNFR1α-associated proteins by yeast two-hybrid screening, and describe a potential interacting protein, GmBI-1α. GmBI-1α had the highest positive correlation with GmNFR1α in a co-expression network analysis, and its expression at the mRNA level in roots was enhanced by rhizobial infection. Moreover, GmBI-1α-GmNFR1α interaction was shown to occur in vitro and in vivo. The GmBI-1α protein was localized to multiple subcellular locations, including the endoplasmic reticulum and plasma membrane. Overexpression of GmBI-1α increased the nodule number in transgenic hairy roots or transgenic soybean, whereas down-regulation of GmBI-1α transcripts by RNA interference reduced the nodule number. In addition, the nodules in GmBI-1α-overexpressing plants became smaller in size and infected area with reduced nitrogenase activity. In GmBI-1α-overexpressing transgenic soybean, the elevated GmBI-1α also promoted plant growth and suppressed the expression of defense signaling-related genes. Infection thread analysis of GmBI-1α-overexpressing plants showed that GmBI-1α promoted rhizobial infection. Collectively, our findings support a GmNFR1α-associated protein in the Nod factor signaling pathway and shed new light on the regulatory mechanism of GmNFR1α in rhizobial symbiosis.


Asunto(s)
Fabaceae , Rhizobium , Simbiosis/genética , Fabaceae/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Glycine max/metabolismo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética
12.
Mol Breed ; 43(5): 33, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37312748

RESUMEN

Soybean is one of the most versatile crops for oil production, human diets, and feedstocks. The vegetative biomass of soybean is an important determinant of seed yield and is crucial for the forage usages. However, the genetic control of soybean biomass is not well explained. In this work, we used a soybean germplasm population, including 231 improved cultivars, 207 landraces, and 121 wild soybeans, to investigate the genetic basis of biomass accumulation of soybean plants at the V6 stage. We found that biomass-related traits, including NDW (nodule dry weight), RDW (root dry weight), SDW (shoot dry weight), and TDW (total dry weight), were domesticated during soybean evolution. In total, 10 loci, encompassing 47 putative candidate genes, were detected for all biomass-related traits by a genome-wide association study. Among these loci, seven domestication sweeps and six improvement sweeps were identified. Glyma.05G047900, a purple acid phosphatase, was a strong candidate gene to improve biomass for future soybean breeding. This study provided new insights into the genetic basis of biomass accumulation during soybean evolution. Supplementary information: The online version contains supplementary material available at 10.1007/s11032-023-01380-6.

13.
aBIOTECH ; 3(2): 110-114, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36304517

RESUMEN

Pod shattering can lead to devastating yield loss of soybean and has been a negatively selected trait in soybean domestication and breeding. Nevertheless, a significant portion of soybean cultivars are still pod shattering-susceptible, limiting their regional and climatic adaptabilities. Here we performed genetic diagnosis on the shattering-susceptible trait of a national registered cultivar, Huachun6 (HC6), and found that HC6 carries the susceptible genotype of a candidate Pod dehiscence 1 (PDH1) gene, which exists in a significant portion of soybean cultivars. We next performed genome editing on PDH1 gene by clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9). In T2 progenies, several transgene-free lines with pdh1 mutations were characterized without affecting major agronomic traits. The pdh1 mutation significantly improved the pod shattering resistance which is associated with aberrant lignin distribution in inner sclerenchyma. Our work demonstrated that precision breeding by genome editing on PDH1 holds great potential for precisely improving pod shattering resistance and adaptability of soybean cultivars.

15.
J Integr Plant Biol ; 64(7): 1325-1338, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35485227

RESUMEN

Crop breeding during the Green Revolution resulted in high yields largely due to the creation of plants with semi-dwarf architectures that could tolerate high-density planting. Although semi-dwarf varieties have been developed in rice, wheat and maize, none was reported in soybean (Glycine max), and few genes controlling plant architecture have been characterized in soybean. Here, we demonstrate that the auxin efflux transporter PINFORMED1 (GmPIN1), which determines polar auxin transport, regulates the leaf petiole angle in soybean. CRISPR-Cas9-induced Gmpin1abc and Gmpin1bc multiple mutants displayed a compact architecture with a smaller petiole angle than wild-type plants. GmPIN1 transcripts and auxin were distributed asymmetrically in the petiole base, with high levels of GmPIN1a/c transcript and auxin in the lower cells, which resulted in asymmetric cell expansion. By contrast, the (iso)flavonoid content was greater in the upper petiole cells than in the lower cells. Our results suggest that (iso)flavonoids inhibit GmPIN1a/c expression to regulate the petiole angle. Overall, our study demonstrates that a signal cascade that integrates (iso)flavonoid biosynthesis, GmPIN1a/c expression, auxin accumulation, and cell expansion in an asymmetric manner creates a desirable petiole curvature in soybean. This study provides a genetic resource for improving soybean plant architecture.


Asunto(s)
Glycine max , Ácidos Indolacéticos , Proteínas de Transporte de Membrana , Hojas de la Planta , Proteínas de Plantas , Flavonoides/biosíntesis , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/genética , Hojas de la Planta/anatomía & histología , Hojas de la Planta/citología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Glycine max/anatomía & histología , Glycine max/genética , Transcriptoma
16.
Plant Physiol ; 188(1): 477-489, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34633461

RESUMEN

Nodule Inception (NIN) is one of the most important root nodule symbiotic genes as it is required for both infection and nodule organogenesis in legumes. Unlike most legumes with a sole NIN gene, there are four putative orthologous NIN genes in soybean (Glycine max). Whether and how these NIN genes contribute to soybean-rhizobia symbiotic interaction remain unknown. In this study, we found that all four GmNIN genes are induced by rhizobia and that conserved CE and CYC binding motifs in their promoter regions are required for their expression in the nodule formation process. By generation of multiplex Gmnin mutants, we found that the Gmnin1a nin2a nin2b triple mutant and Gmnin1a nin1b nin2a nin2b quadruple mutant displayed similar defects in rhizobia infection and root nodule formation, Gmnin2a nin2b produced fewer nodules but displayed a hyper infection phenotype compared to wild type (WT), while the Gmnin1a nin1b double mutant nodulated similar to WT. Overexpression of GmNIN1a, GmNIN1b, GmNIN2a, and GmNIN2b reduced nodule numbers after rhizobia inoculation, with GmNIN1b overexpression having the weakest effect. In addition, overexpression of GmNIN1a, GmNIN2a, or GmNIN2b, but not GmNIN1b, produced malformed pseudo-nodule-like structures without rhizobia inoculation. In conclusion, GmNIN1a, GmNIN2a, and GmNIN2b play functionally redundant yet complicated roles in soybean nodulation. GmNIN1b, although expressed at a comparable level with the other homologs, plays a minor role in root nodule symbiosis. Our work provides insight into the understanding of the asymmetrically redundant function of GmNIN genes in soybean.


Asunto(s)
Glycine max/crecimiento & desarrollo , Glycine max/genética , Glycine max/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Productos Agrícolas/microbiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Rhizobium , Nódulos de las Raíces de las Plantas/microbiología , Glycine max/microbiología
17.
J Agric Food Chem ; 69(39): 11656-11664, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34554738

RESUMEN

As the major contributors to the floral odors of tea products, terpenoid volatiles play critical roles in the defense response of plants to multiple stresses. Until now, only a few TPS genes in tea plants (Camellia sinensis) have been functionally validated. In this study, by comparative studies conducted at gene, protein, and metabolite levels during oolong tea processing, we isolated an ocimene synthase gene, CsOCS, which displays a low similarity to previously characterized tea ocimene synthases. Further prokaryotic expression and subcellular localization analysis showed that it is plastid-located and could produce (E)-ß-ocimene and (Z)-ß-ocimene using GPP as the substrate. The optimum temperature and pH of the enzyme were 30 °C and 7.5, respectively. Treatment with exogenous methyl jasmonate elevated the transcript level of CsOCS and enhanced the emission of ocimene from tea leaves. Collectively, CsOCS is implicated as a key enzyme for ß-ocimene synthesis during oolong tea processing.


Asunto(s)
Camellia sinensis , Monoterpenos Acíclicos , Alquenos , Hojas de la Planta , Proteínas de Plantas/genética ,
18.
Plant Cell ; 33(9): 2981-3003, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34240197

RESUMEN

To overcome nitrogen deficiency, legume roots establish symbiotic interactions with nitrogen-fixing rhizobia that are fostered in specialized organs (nodules). Similar to other organs, nodule formation is determined by a local maximum of the phytohormone auxin at the primordium site. However, how auxin regulates nodule development remains poorly understood. Here, we found that in soybean, (Glycine max), dynamic auxin transport driven by PIN-FORMED (PIN) transporter GmPIN1 is involved in nodule primordium formation. GmPIN1 was specifically expressed in nodule primordium cells and GmPIN1 was polarly localized in these cells. Two nodulation regulators, (iso)flavonoids trigger expanded distribution of GmPIN1b to root cortical cells, and cytokinin rearranges GmPIN1b polarity. Gmpin1abc triple mutants generated with CRISPR-Cas9 showed the impaired establishment of auxin maxima in nodule meristems and aberrant divisions in the nodule primordium cells. Moreover, overexpression of GmPIN1 suppressed nodule primordium initiation. GmPIN9d, an ortholog of Arabidopsis thaliana PIN2, acts together with GmPIN1 later in nodule development to acropetally transport auxin in vascular bundles, fine-tuning the auxin supply for nodule enlargement. Our findings reveal how PIN-dependent auxin transport modulates different aspects of soybean nodule development and suggest that the establishment of auxin gradient is a prerequisite for the proper interaction between legumes and rhizobia.


Asunto(s)
Glycine max/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Transporte Biológico , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo
19.
BMC Plant Biol ; 20(1): 517, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33183238

RESUMEN

BACKGROUND: Plant papain-like cysteine proteases (PLCPs) are a large class of proteolytic enzymes and play important roles in root nodule symbiosis (RNS), while the whole-genome studies of PLCP family genes in legume are quite limited, and the roles of Glycine max PLCPs (GmPLCPs) in nodulation, nodule development and senescence are not fully understood. RESULTS: In the present study, we identified 97 GmPLCPs and performed a genome-wide survey to explore the expansion of soybean PLCP family genes and their relationships to RNS. Nineteen paralogous pairs of genomic segments, consisting of 77 GmPLCPs, formed by whole-genome duplication (WGD) events were identified, showing a high degree of complexity in duplication. Phylogenetic analysis among different species showed that the lineage differentiation of GmPLCPs occurred after family expansion, and large tandem repeat segment were specifically in soybean. The expression patterns of GmPLCPs in symbiosis-related tissues and nodules identified RNS-related GmPLCPs and provided insights into their putative symbiotic functions in soybean. The symbiotic function analyses showed that a RNS-related GmPLCP gene (Glyma.04G190700) really participate in nodulation and nodule development. CONCLUSIONS: Our findings improved our understanding of the functional diversity of legume PLCP family genes, and provided insights into the putative roles of the legume PLCPs in nodulation, nodule development and senescence.


Asunto(s)
Proteasas de Cisteína/metabolismo , Glycine max/genética , Fijación del Nitrógeno/genética , Papaína/genética , Papaína/metabolismo , Nodulación de la Raíz de la Planta/genética , Simbiosis/genética , Proteasas de Cisteína/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Fijación del Nitrógeno/fisiología , Filogenia , Nodulación de la Raíz de la Planta/fisiología , Rhizobium , Glycine max/fisiología , Encuestas y Cuestionarios , Simbiosis/fisiología
20.
Natl Sci Rev ; 7(11): 1776-1786, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34691511

RESUMEN

Soybean accounts for more than half of the global production of oilseed and more than a quarter of the protein used globally for human food and animal feed. Soybean domestication involved parallel increases in seed size and oil content, and a concomitant decrease in protein content. However, science has not yet discovered whether these effects were due to selective pressure on a single gene or multiple genes. Here, re-sequencing data from >800 genotypes revealed a strong selection during soybean domestication on GmSWEET10a. The selection of GmSWEET10a conferred simultaneous increases in soybean-seed size and oil content as well as a reduction in the protein content. The result was validated using both near-isogenic lines carrying substitution of haplotype chromosomal segments and transgenic soybeans. Moreover, GmSWEET10b was found to be functionally redundant with its homologue GmSWEET10a and to be undergoing selection in current breeding, leading the the elite allele GmSWEET10b, a potential target for present-day soybean breeding. Both GmSWEET10a and GmSWEET10b were shown to transport sucrose and hexose, contributing to sugar allocation from seed coat to embryo, which consequently determines oil and protein contents and seed size in soybean. We conclude that past selection of optimal GmSWEET10a alleles drove the initial domestication of multiple soybean-seed traits and that targeted selection of the elite allele GmSWEET10b may further improve the yield and seed quality of modern soybean cultivars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA