Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
1.
Int J Biol Sci ; 20(9): 3285-3301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993559

RESUMEN

Metabolic reprogramming is one of the essential features of tumors that may dramatically contribute to cancer metastasis. Employing liquid chromatography-tandem mass spectrometry-based metabolomics, we analyzed the metabolic profile from 12 pairwise serum samples of NSCLC brain metastasis patients before and after CyberKnife Stereotactic Radiotherapy. We evaluated the histopathological architecture of 144 surgically resected NSCLC brain metastases. Differential metabolites were screened and conducted for functional clustering and annotation. Metabolomic profiling identified a pathway that was enriched in the metabolism of branched-chain amino acids (BCAAs). Pathologically, adenocarcinoma with a solid growth pattern has a higher propensity for brain metastasis. Patients with high BCAT1 protein levels in lung adenocarcinoma tissues were associated with a poor prognosis. We found that brain NSCLC cells had elevated catabolism of BCAAs, which led to a depletion of α-KG. This depletion, in turn, reduced the expression and activity of the m6A demethylase ALKBH5. Thus, ALKBH5 inhibition participated in maintaining the m6A methylation of mesenchymal genes and promoted the occurrence of epithelial-mesenchymal transition (EMT) in NSCLC cells and the proliferation of NSCLC cells in the brain. BCAA catabolism plays an essential role in the metastasis of NSCLC cells.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Masculino , Femenino , Aminoácidos de Cadena Ramificada/metabolismo , Persona de Mediana Edad , Línea Celular Tumoral , Transaminasas
2.
bioRxiv ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38979210

RESUMEN

Bone pain is a presenting feature of bone cancers such as osteosarcoma (OS), relayed by skeletal-innervating peripheral afferent neurons. Potential functions of tumor-associated sensory neurons in bone cancers beyond pain sensation are unknown. To uncover neural regulatory functions, a chemical-genetic approach in mice with a knock-in allele for TrkA was used to functionally perturb sensory nerve innervation during OS growth and disease progression. TrkA inhibition in transgenic mice led to significant reductions in sarcoma-associated sensory innervation and vascularization, tumor growth and metastasis, and prolonged overall survival. Single-cell transcriptomics revealed that sarcoma denervation was associated with phenotypic alterations in both OS tumor cells and cells within the tumor microenvironment, and with reduced calcitonin gene-related peptide (CGRP) and vascular endothelial growth factor (VEGF) signaling. Multimodal and multi-omics analyses of human OS bone samples and human dorsal root ganglia neurons further implicated peripheral innervation and neurotrophin signaling in OS tumor biology. In order to curb tumor-associated axonal ingrowth, we next leveraged FDA-approved bupivacaine liposomes leading to significant reductions in sarcoma growth, vascularity, as well as alleviation of pain. In sum, TrkA-expressing peripheral neurons positively regulate key aspects of OS progression and sensory neural inhibition appears to disrupt calcitonin receptor signaling (CALCR) and VEGF signaling within the sarcoma microenvironment leading to significantly reduced tumor growth and improved survival. These data suggest that interventions to prevent pathological innervation of osteosarcoma represent a novel adjunctive therapy to improve clinical outcomes and survival.

3.
Imeta ; 3(2): e170, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882486

RESUMEN

The human microbiome exhibits a profound connection with the cancer development, progression, and therapeutic response, with particular emphasis on its components of the mycobiome, which are still in the early stages of research. In this review, we comprehensively summarize cancer-related symbiotic and pathogenic fungal genera. The intricate mechanisms through which fungi impact cancer as an integral member of both gut and tissue-resident microbiomes are further discussed. In addition, we shed light on the pivotal physiological roles of various nutrients, including cholesterol, carbohydrates, proteins and minerals, in facilitating the growth, reproduction, and invasive pathogenesis of the fungi. While our exploration of the interplay between nutrients and cancer, mediated by the mycobiome, is ongoing, the current findings have yet to yield conclusive results. Thus, delving into the relationship between nutrients and fungal pathogenesis in cancer development and progression would provide valuable insights into anticancer therapy and foster precision nutrition and individualized treatments that target fungi from bench to bedside.

4.
bioRxiv ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38895367

RESUMEN

The profound pain accompanying bone fracture is mediated by somatosensory neurons, which also appear to be required to initiate bone regeneration following fracture. Surprisingly, the precise neuroanatomical circuitry mediating skeletal nociception and regeneration remains incompletely understood. Here, we characterized somatosensory dorsal root ganglia (DRG) afferent neurons innervating murine long bones before and after experimental long bone fracture in mice. Retrograde labeling of DRG neurons by an adeno-associated virus with peripheral nerve tropism showed AAV-tdT signal. Single cell transcriptomic profiling of 6,648 DRG neurons showed highest labeling across CGRP+ neuron clusters (6.9-17.2%) belonging to unmyelinated C fibers, thinly myelinated Aδ fibers and Aß-Field LTMR (9.2%). Gene expression profiles of retrograde labeled DRG neurons over multiple timepoints following experimental stress fracture revealed dynamic changes in gene expression corresponding to the acute inflammatory ( S100a8 , S100a9 ) and mechanical force ( Piezo2 ). Reparative phase after fracture included morphogens such as Tgfb1, Fgf9 and Fgf18 . Two methods to surgically or genetically denervate fractured bones were used in combination with scRNA-seq to implicate defective mesenchymal cell proliferation and osteodifferentiation as underlying the poor bone repair capacity in the presence of attenuated innervation. Finally, multi-tissue scRNA-seq and interactome analyses implicated neuron-derived FGF9 as a potent regulator of fracture repair, a finding compatible with in vitro assessments of neuron-to-skeletal mesenchyme interactions.

5.
Reg Anesth Pain Med ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38844412

RESUMEN

BACKGROUND: Taxanes such as paclitaxel (PTX) induce dose-dependent chemotherapy-induced peripheral neuropathy (CIPN), which is associated with debilitating chronic pain and gait impairment. Increased macrophage-related proinflammatory activities have been reported to mediate the development and maintenance of neuropathic pain. While spinal cord stimulation (SCS) has been used for a number of pain conditions, the mechanisms supporting its use for CIPN remain to be elucidated. Thus, we aimed to examine whether SCS can attenuate Schwann cell-mediated and macrophage-mediated neuroinflammation in the sciatic nerve of Rowlette Nude (RNU) rats with PTX-induced gait impairment and mechanical hypersensitivity. METHODS: Adult male tumor-bearing RNU rats were used for this study examining PTX treatment and SCS. Gait and mechanical hypersensitivity were assessed weekly. Cytokines, gene expression, macrophage infiltration and polarization, nerve morphology and Schwann cells were examined in sciatic nerves using multiplex immunoassay, bulk RNA sequencing, histochemistry and immunohistochemistry techniques. RESULTS: SCS (50 Hz, 0.2 milliseconds, 80% motor threshold) attenuated the development of mechanical hypersensitivity (20.93±0.80 vs 12.23±2.71 grams, p<0.0096) and temporal gait impairment [swing (90.41±7.03 vs 117.27±9.71%, p<0.0076), and single stance times (94.92±3.62 vs 112.75±7.27%, p<0.0245)] induced by PTX (SCS+PTX+Tumor vs Sham SCS+PTX+Tumor). SCS also attenuated the reduction in Schwann cells, myelin thickness and increased the concentration of anti-inflammatory cytokine interleukin (IL)-10. Bulk RNA sequencing revealed differential gene expression after SCS, with 607 (59.2%) genes upregulated while 418 (40.8%) genes were downregulated. Notably, genes related to anti-inflammatory cytokines and neuronal growth were upregulated, while genes related to proinflammatory-promoting genes, increased M2γ polarization and decreased macrophage infiltration and Schwann cell loss were downregulated. CONCLUSION: SCS may attenuate PTX-induced pain and temporal gait impairment, which may be partly attributed to decreases in Schwann cell loss and macrophage-mediated neuroinflammation in sciatic nerves.

6.
bioRxiv ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38826432

RESUMEN

Pain after surgery causes significant suffering. Opioid analgesics cause severe side effects and accidental death. Therefore, there is an urgent need to develop non-opioid therapies for managing post-surgical pain. Local application of Clarix Flo (FLO), a human amniotic membrane (AM) product, attenuated established post-surgical pain hypersensitivity without exhibiting known side effects of opioid use in mice. This effect was achieved through direct inhibition of nociceptive dorsal root ganglion (DRG) neurons via CD44-dependent pathways. We further purified the major matrix component, the heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) from human AM that has greater purity and water solubility than FLO. HC-HA/PTX3 replicated FLO-induced neuronal and pain inhibition. Mechanistically, HC-HA/PTX3 induced cytoskeleton rearrangements to inhibit sodium current and high-voltage activated calcium current on nociceptive neurons, suggesting it is a key bioactive component mediating pain relief. Collectively, our findings highlight the potential of naturally derived biologics from human birth tissues as an effective non-opioid treatment for post-surgical pain and unravel the underlying mechanisms.

7.
Pain ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38833577

RESUMEN

ABSTRACT: Pathogenic variations in the NTRK1 can cause congenital insensitivity to pain with anhidrosis (CIPA), a rare autosomal recessive inherited neuropathy. The precise diagnosis of CIPA relies on the identification of pathogenic genotypes. Therefore, it is essential to expand the NTRK1 variation spectrum and improve molecular diagnosis methods. In this study, 74 probands with typical manifestations of CIPA but unknown genotypes were recruited. A comprehensive molecular genetic analysis was performed to identify variations in the NTRK1, using techniques including Sanger and next-generation sequencing, bioinformatic analysis, quantitative polymerase chain reaction (qPCR), gap-PCR, short tandem repeat (STR) genotyping, and reverse-transcription PCR. In addition, functional assays were conducted to determine the pathogenicity of variants of uncertain significance (VUS) and further characterized changes in glycosylation and phosphorylation of 14 overexpressed mutant vectors with variants at different domains in the TrkA protein, which is encoded by NTRK1. A total of 48 variations in the NTRK1 were identified, including 22 novel ones. When combined with data from another 53 CIPA patients examined in our previous work, this study establishes the largest genotypic and phenotypic spectra of CIPA worldwide, including 127 CIPA families. Moreover, functional studies indicated that the pathogenicity of VUS mainly affected insufficient glycosylation in the extracellular domain and abnormal phosphorylation in the intracellular domain. This study not only provides important evidence for precise diagnosis of CIPA but also further enriches our understanding of the pathogenesis of this disease.

8.
Ann Med Surg (Lond) ; 86(5): 2786-2793, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38694320

RESUMEN

Background: There has been limited literature synthesizing the therapeutic effects of surgical procedures for fungal periprosthetic joint infection (PJI) following hip arthroplasty. The authors' current study aims to comprehensively review and analyze those relevant literature, and carefully make recommendations for future clinical practices. Methods: Our current study was carried out in accordance with the PRISMA 2020 statement. Studies regarding the surgical management of fungal PJI following hip arthroplasty were collected via a thorough search of PubMed, Embase and Google scholar databases. The search was lastly performed in March 2023. Non-English language, reviews, articles with duplicated data, and articles without clear information about the type of fungal pathogens and treatment options were excluded. The authors evaluated their systematic review compliance by using AMSTAR 2 criteria and fell in moderate quality. Clinical outcomes of different surgical procedures were evaluated, and a binary logistic regression model was used to identify the risks associated with treatment failure. Data analyses were performed using the SPSS version 19.0. Results: A total of 33 articles encompassing 80 patients with fungal PJI following hip arthroplasty were identified. Candida albicans was the most frequently isolated fungus (56.3%, 45/80). The overall treatment success was achieved in 71.1% (54/76) of the reported cases. Univariate analysis showed that the differences of success rate were not significant between publication periods, genders, ages, specimen collection methods, and fungal pathogens. Treatment success rate was 47.4% (9/19) in fungal PJI cases with bacterial co-infection, significantly lower than those without [vs. 79.0% (45/57), P=0.017]. The pooled success rate for surgical debridement, spacer implantation, resection arthroplasty, one-stage revision, and two-stage revision was 50.0% (4/8), 42.9% (3/7), 55.0% (11/20), 86.7% (13/15), and 88.5% (23/26), respectively, with significant differences between them (P=0.009). A binary logistic regression model showed that bacterial co-infection and surgical option were the two significant risk factors associated with treatment failure for fungal PJI following hip arthroplasty. Discussion: Regarding the surgical treatment of fungal PJI following hip arthroplasty, patients with bacterial co-infection, and those treated with surgical procedures such as debridement, spacer implantation, and resection arthroplasty should be aware of the higher risks of failure. Nonetheless, future multiple-centre cohort studies are required to establish the optimal treatment.

9.
Pain ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38815196

RESUMEN

ABSTRACT: Many medications commonly used to treat neuropathic pain are associated with significant, dose-limiting adverse effects, including sedation, dizziness, and fatigue. These adverse effects are due to the activity of these medications within the central nervous system. The objective of this work was to investigate the interactions between peripherally restricted cannabinoid receptor and mu-opioid receptor (MOR) agonists on ongoing and evoked neuropathic pain behaviors in mouse models. RNAscope analysis of cannabinoid receptor type 1 (CB1R) and MOR mRNA demonstrated that the mRNA of both receptors is colocalized in both mouse and human dorsal root ganglion. Single-cell RNAseq of dorsal root ganglion from chronic constriction injury mice showed that the mRNA of both receptors (Cnr1 and Oprm1) is coexpressed across different neuron clusters. Myc-CB1R and FLAG-MOR were cotransfected into immortalized HEK-293T cells and were found to interact at a subcellular level. We also find that CB-13 (a peripherally restricted dual CB1R and cannabinoid receptor type 2 agonist) and DALDA (a peripherally restricted MOR agonist) both attenuate mechanical hypersensitivity in a murine model of neuropathic pain. Using isobolographic analysis, we demonstrate that when coadministered, these agents synergistically attenuate mechanical hypersensitivity. Importantly, combination dosing of these agents does not cause any detectable preferential behaviors or motor impairment. However, repeated dosing of these agents is associated with the development of tolerance to these drugs. Collectively, these findings suggest that leveraging synergistic pain inhibition between cannabinoid receptor and MOR agonists in peripheral sensory neurons may be worth examining in patients with neuropathic pain.

10.
Mol Biol Rep ; 51(1): 604, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700644

RESUMEN

BACKGROUND: The healing process after a myocardial infarction (MI) in humans involves complex events that replace damaged tissue with a fibrotic scar. The affected cardiac tissue may lose its function permanently. In contrast, zebrafish display a remarkable capacity for scar-free heart regeneration. Previous studies have revealed that syndecan-4 (SDC4) regulates inflammatory response and fibroblast activity following cardiac injury in higher vertebrates. However, whether and how Sdc4 regulates heart regeneration in highly regenerative zebrafish remains unknown. METHODS AND RESULTS: This study showed that sdc4 expression was differentially regulated during zebrafish heart regeneration by transcriptional analysis. Specifically, sdc4 expression increased rapidly and transiently in the early regeneration phase upon ventricular cryoinjury. Moreover, the knockdown of sdc4 led to a significant reduction in extracellular matrix protein deposition, immune cell accumulation, and cell proliferation at the lesion site. The expression of tgfb1a and col1a1a, as well as the protein expression of Fibronectin, were all down-regulated under sdc4 knockdown. In addition, we verified that sdc4 expression was required for cardiac repair in zebrafish via in vivo electrocardiogram analysis. Loss of sdc4 expression caused an apparent pathological Q wave and ST elevation, which are signs of human MI patients. CONCLUSIONS: Our findings support that Sdc4 is required to mediate pleiotropic repair responses in the early stage of zebrafish heart regeneration.


Asunto(s)
Corazón , Regeneración , Sindecano-4 , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Sindecano-4/genética , Sindecano-4/metabolismo , Regeneración/genética , Corazón/fisiología , Corazón/fisiopatología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Proliferación Celular/genética , Miocardio/metabolismo , Miocardio/patología , Técnicas de Silenciamiento del Gen
11.
Front Endocrinol (Lausanne) ; 15: 1341546, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38654930

RESUMEN

Objective: This study aimed to quantify the severity of metabolic syndrome(MetS) and investigate its association with cardiovascular disease(CVD) risk on Chinese adults. Methods: 13,500 participants from the Zhejiang Adult Chronic Disease Study were followed up between 2010 and 2021. A continuous MetS severity score derived from the five components of MetS was used to quantify MetS severity, and the association between MetS severity and the risk of incident CVD was assessed using Cox proportional hazard and restricted cubic spline regression. Results: Both the presence and severity of MetS were strongly associated with CVD risk. MetS was related to an increased risk of CVD (hazard ratio(HR):1.700, 95% confidence interval(CI): 1.380-2.094). Compared with the hazard ratio for CVD in the lowest quartile of the MetS severity score, that in the second, third, and highest quartiles were 1.812 (1.329-2.470), 1.746 (1.265-2.410), and 2.817 (2.015-3.938), respectively. A linear and positive dose-response relationship was observed between the MetS severity and CVD risk (P for non-linearity = 0.437). Similar results were found in various sensitivity analyses. Conclusion: The MetS severity score was significantly associated with CVD risk. Assessing MetS severity and further ensuring intervention measures according to the different severities of MetS may be more useful in preventing CVD.


Asunto(s)
Enfermedades Cardiovasculares , Síndrome Metabólico , Índice de Severidad de la Enfermedad , Humanos , Síndrome Metabólico/epidemiología , Síndrome Metabólico/complicaciones , Masculino , Enfermedades Cardiovasculares/epidemiología , Femenino , Persona de Mediana Edad , Estudios Longitudinales , Adulto , China/epidemiología , Factores de Riesgo , Anciano , Estudios de Cohortes , Estudios de Seguimiento , Incidencia , Pueblos del Este de Asia
12.
Front Mol Biosci ; 11: 1332090, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516185

RESUMEN

Background: Mycophenolate mofetil (MMF), the morpholinoethyl ester of mycophenolic acid, is widely used for maintenance immunosuppression in transplantation. The gastrointestinal toxicity of MMF has been widely uncovered. However, the comprehensive metabolic analysis of MMF-induced toxicity is lacking. This study is aimed to ascertain the metabolic changes after MMF administration in mice. Methods: A total of 700 mg MMF was dissolved in 7 mL dimethyl sulfoxide (DMSO), and then 0.5 mL of mixture was diluted with 4.5 mL of saline (100 mg/kg). Mice in the treatment group (n = 9) were given MMF (0.1 mL/10 g) each day via intraperitoneal injection lasting for 2 weeks, while those in the control group (n = 9) received the same amount of blank solvent (DMSO: saline = 1:9). Gas chromatography-mass spectrometry was utilized to identify the metabolic profiling in serum samples and multiple organ tissues of mice. The potential metabolites were identified using orthogonal partial least squares discrimination analysis. Meanwhile, we used the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (http://www.kegg.jp) to depict the metabolic pathways. The percentages of lymphocytes in spleens were assessed by multiparameter flow cytometry analysis. Results: Compared to the control group, we observed that MMF treatment induced differential expression of metabolites in the intestine, hippocampus, lung, liver, kidney, heart, serum, and cortex tissues. Subsequently, we demonstrated that multiple amino acids metabolism and fatty acids biosynthesis were disrupted following MMF treatment. Additionally, MMF challenge dramatically increased CD4+ T cell percentages but had no significant influences on other types of lymphocytes. Conclusion: MMF can affect the metabolism in various organs and serum in mice. These data may provide preliminary judgement for MMF-induced toxicity and understand the metabolic mechanism of MMF more comprehensively.

13.
Glia ; 72(6): 1054-1066, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38450799

RESUMEN

Neurons in sensory ganglia are wrapped completely by satellite glial cells (SGCs). One putative function of SGCs is to regulate the neuronal microenvironment, but this role has received only little attention. In this study we investigated whether the SGC envelope serves a barrier function and how SGCs may control the neuronal microenvironment. We studied this question on short-term (<24 h) cell cultures of dorsal root ganglia and trigeminal ganglia from adult mice, which contain neurons surrounded with SGCs, and neurons that are not. Using calcium imaging, we measured neuronal responses to molecules with established actions on sensory neurons. We found that neurons surrounded by SGCs had a smaller response to molecules such as adenosine triphosphate (ATP), glutamate, GABA, and bradykinin than neurons without glial cover. When we inhibited the activity of NTPDases, which hydrolyze the ATP, and also when we inhibited the glutamate and GABA transporters on SGCs, this difference in the neuronal response was no longer observed. We conclude that the SGC envelope does not hinder diffusional passage, but acts as a metabolic barrier that regulates the neuronal microenvironment, and can protect the neurons and modulate their activity.


Asunto(s)
Neuroglía , Neuronas , Animales , Ratones , Neuroglía/metabolismo , Ganglios Sensoriales , Ganglios Espinales , Glutamatos/metabolismo , Adenosina Trifosfato/metabolismo , Células Satélites Perineuronales/metabolismo
14.
Mol Med Rep ; 29(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38391013

RESUMEN

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the Transwell invasion and migration assay data shown in Fig. 1B and C were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes, which had either already been published or were under consideration for publication at around the same time. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 17: 4203­4212, 2018; DOI: 10.3892/mmr.2018.8444].

15.
Br J Anaesth ; 132(4): 746-757, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38310069

RESUMEN

BACKGROUND: The mechanisms for spinal cord stimulation (SCS) to alleviate chronic pain are only partially known. We aimed to elucidate the roles of adenosine A1 and A3 receptors (A1R, A3R) in the inhibition of spinal nociceptive transmission by SCS, and further explored whether 2'-deoxycoformycin (dCF), an inhibitor of adenosine deaminase, can potentiate SCS-induced analgesia. METHODS: We used RNAscope and immunoblotting to examine the distributions of adora1 and adora3 expression, and levels of A1R and A3R proteins in the spinal cord of rats after tibial-spared nerve injury (SNI-t). Electrophysiology recording was conducted to examine how adenosine receptor antagonists, virus-mediated adora3 knockdown, and dCF affect SCS-induced inhibition of C-fibre-evoked spinal local field potential (C-LFP). RESULTS: Adora1 was predominantly expressed in neurones, whereas adora3 is highly expressed in microglial cells in the rat spinal cord. Spinal application of antagonists (100 µl) of A1R (8-cyclopentyl-1,3-dipropylxanthine [DPCPX], 50 µM) and A3R (MRS1523, 200 nM) augmented C-LFP in SNI-t rats (DPCPX: 1.39 [0.18] vs vehicle: 0.98 [0.05], P=0.046; MRS1523: 1.21 [0.07] vs vehicle: 0.91 [0.03], P=0.002). Both drugs also blocked inhibition of C-LFP by SCS. Conversely, dCF (0.1 mM) enhanced SCS-induced C-LFP inhibition (dCF: 0.60 [0.04] vs vehicle: 0.85 [0.02], P<0.001). In the behaviour study, dCF (100 nmol 15 µl-1, intrathecal) also enhanced inhibition of mechanical hypersensitivity by SCS in SNI-t rats. CONCLUSIONS: Spinal A1R and A3R signalling can exert tonic suppression and also contribute to SCS-induced inhibition of spinal nociceptive transmission after nerve injury. Inhibition of adenosine deaminase may represent a novel adjuvant pharmacotherapy to enhance SCS-induced analgesia.


Asunto(s)
Adenosina Desaminasa , Estimulación de la Médula Espinal , Ratas , Animales , Adenosina/farmacología , Médula Espinal , Dolor
16.
J Clin Invest ; 134(3)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38015636

RESUMEN

Current treatments for neurodegenerative diseases and neural injuries face major challenges, primarily due to the diminished regenerative capacity of neurons in the mammalian CNS as they mature. Here, we investigated the role of Ezh2, a histone methyltransferase, in regulating mammalian axon regeneration. We found that Ezh2 declined in the mouse nervous system during maturation but was upregulated in adult dorsal root ganglion neurons following peripheral nerve injury to facilitate spontaneous axon regeneration. In addition, overexpression of Ezh2 in retinal ganglion cells in the CNS promoted optic nerve regeneration via both histone methylation-dependent and -independent mechanisms. Further investigation revealed that Ezh2 fostered axon regeneration by orchestrating the transcriptional silencing of genes governing synaptic function and those inhibiting axon regeneration, while concurrently activating various factors that support axon regeneration. Notably, we demonstrated that GABA transporter 2, encoded by Slc6a13, acted downstream of Ezh2 to control axon regeneration. Overall, our study underscores the potential of modulating chromatin accessibility as a promising strategy for promoting CNS axon regeneration.


Asunto(s)
Axones , Traumatismos del Nervio Óptico , Animales , Ratones , Axones/metabolismo , Ganglios Espinales/metabolismo , Mamíferos , Regeneración Nerviosa/genética , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/metabolismo , Células Ganglionares de la Retina/metabolismo
17.
Neurochem Res ; 49(2): 507-518, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37955815

RESUMEN

Previous studies suggested that postsynaptic neuroligin-2 may shift from inhibitory toward excitatory function under pathological pain conditions. We hypothesize that nerve injury may increase the expression of spinal MAM-domain GPI-anchored molecule 1 (MDGA1), which can bind to neuroligin-2 and thereby, alter its interactions with postsynaptic scaffolding proteins and increase spinal excitatory synaptic transmission, leading to neuropathic pain. Western blot, immunofluorescence staining, and co-immunoprecipitation studies were conducted to examine the critical role of MDGA1 in the lumbar spinal cord dorsal horn in rats after spinal nerve ligation (SNL). Small interfering ribonucleic acids (siRNAs) targeting MDGA1 were used to examine the functional roles of MDGA1 in neuropathic pain. Protein levels of MDGA1 in the ipsilateral dorsal horn were significantly upregulated at day 7 post-SNL, as compared to that in naïve or sham rats. The increased levels of GluR1 in the synaptosomal membrane fraction of the ipsilateral dorsal horn tissues at day 7 post-SNL was normalized to near sham level by pretreatment with intrathecal MDGA1 siRNA2308, but not scrambled siRNA or vehicle. Notably, knocking down MDGA1 with siRNAs reduced the mechanical and thermal pain hypersensitivities, and inhibited the increased excitatory synaptic interaction between neuroligin-2 with PSD-95, and prevented the decreased inhibitory postsynaptic interactions between neuroligin-2 and Gephyrin. Our findings suggest that SNL upregulated MDGA1 expression in the dorsal horn, which contributes to the pain hypersensitivity through increasing the net excitatory interaction mediated by neuroligin-2 and surface delivery of GluR1 subunit in dorsal horn neurons.


Asunto(s)
Neuralgia , Neuroliginas , Ratas , Animales , Regulación hacia Arriba , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal/metabolismo , Células del Asta Posterior/metabolismo , Neuralgia/patología , Nervios Espinales , ARN Interferente Pequeño/metabolismo , Hiperalgesia/metabolismo , Médula Espinal/patología
18.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37885127

RESUMEN

Brain age is a promising biomarker for predicting chronological age based on brain imaging data. Although movie and resting-state functional MRI techniques have attracted much research interest for the investigation of brain function, whether the 2 different imaging paradigms show similarities and differences in terms of their capabilities and properties for predicting brain age remains largely unexplored. Here, we used movie and resting-state functional MRI data from 528 participants aged from 18 to 87 years old in the Cambridge Centre for Ageing and Neuroscience data set for functional network construction and further used elastic net for age prediction model building. The connectivity properties of movie and resting-state functional MRI were evaluated based on the connections supporting predictive model building. We found comparable predictive abilities of movie and resting-state connectivity in estimating brain age of individuals, as evidenced by correlation coefficients of 0.868 and 0.862 between actual and predicted age, respectively. Despite some similarities, notable differences in connectivity properties were observed between the predictive models using movie and resting-state functional MRI data, primarily involving components of the default mode network. Our results highlight that both movie and resting-state functional MRI are effective and promising techniques for predicting brain age. Leveraging its data acquisition advantages, such as improved child and patient compliance resulting in reduced motion artifacts, movie functional MRI is emerging as an important paradigm for studying brain function in pediatric and clinical populations.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Humanos , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Películas Cinematográficas , Encéfalo/diagnóstico por imagen , Envejecimiento , Red Nerviosa , Descanso
19.
Mol Neurobiol ; 61(3): 1845-1859, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37792259

RESUMEN

Chronic pain is a significant public health issue that is often refractory to existing therapies. Here we use a multiomic approach to identify cis-regulatory elements that show differential chromatin accessibility and reveal transcription factor (TF) binding motifs with functional regulation in the rat dorsal root ganglion (DRG), which contain cell bodies of primary sensory neurons, after nerve injury. We integrated RNA-seq to understand how differential chromatin accessibility after nerve injury may influence gene expression. Using TF protein arrays and chromatin immunoprecipitation-qPCR, we confirmed C/EBPγ binding to a differentially accessible sequence and used RNA-seq to identify processes in which C/EBPγ plays an important role. Our findings offer insights into TF motifs that are associated with chronic pain. These data show how interactions between chromatin landscapes and TF expression patterns may work together to determine gene expression programs in rat DRG neurons after nerve injury.


Asunto(s)
Dolor Crónico , Neuralgia , Ratas , Animales , Ratas Sprague-Dawley , Dolor Crónico/metabolismo , Neuralgia/metabolismo , Células Receptoras Sensoriales/metabolismo , Cromatina/metabolismo , Ganglios Espinales/metabolismo
20.
Chemosphere ; 349: 140807, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029937

RESUMEN

Permanganate is a common preoxidant applied in water treatment to remove organic pollutants and to reduce the formation of disinfection by-products. However, the effect of permanganate preoxidation on the transformation of dissolved effluent organic matter (dEfOM) and on the formation of unknown chlorinated disinfection by-products (Cl-DBPs) during chlorination remains unknown at molecular level. In this work, the molecular changes of dEfOM during permanganate preoxidation and subsequent chlorination were characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Permanganate preoxidation was found to decrease the DBE (double bond equivalent) and AImod (modified aromaticity index) of the dEfOM. The identity and fate of over 400 unknown Cl-DBPs during KMnO4-chlorine treatment were investigated. Most Cl-DBPs and the precursors were found to be highly unsaturated aliphatic and phenolic compounds. The Cl-DBPs precursors with lower H/C and lower O/C were preferentially removed by permanganate preoxidation. Additionally, permanganate preoxidation decreased the number of unknown Cl-DBPs by 30% and intensity of unknown Cl-DBPs by 25%. One-chlorine-containing DBPs were the major Cl-DBPs and had more CH2 groups and higher DBEw than Cl-DBPs containing two and three chlorine atoms. 60% of the Cl-DBPs formation was attributed to substitution reactions (i.e., +Cl-H, +2Cl-2H, +3Cl-3H, +ClO-H, +Cl2O3-2H). This work provides detailed molecular level information on the efficacy of permanganate preoxidation on the control of overall Cl-DBPs formation during chlorination.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección/métodos , Materia Orgánica Disuelta , Halogenación , Cloro/análisis , Purificación del Agua/métodos , Contaminantes Químicos del Agua/análisis , Desinfectantes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...