Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 26(2): 845-858, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29401964

RESUMEN

In this manuscript, we experimentally and numerically investigate the chaotic dynamics of the state-of-polarization in a nonlinear optical fiber due to the cross-interaction between an incident signal and its intense backward replica generated at the fiber-end through an amplified reflective delayed loop. Thanks to the cross-polarization interaction between the two-delayed counter-propagating waves, the output polarization exhibits fast temporal chaotic dynamics, which enable a powerful scrambling process with moving speeds up to 600-krad/s. The performance of this all-optical scrambler was then evaluated on a 10-Gbit/s On/Off Keying telecom signal achieving an error-free transmission. We also describe how these temporal and chaotic polarization fluctuations can be exploited as an all-optical random number generator. To this aim, a billion-bit sequence was experimentally generated and successfully confronted to the dieharder benchmarking statistic tools. Our experimental analysis are supported by numerical simulations based on the resolution of counter-propagating coupled nonlinear propagation equations that confirm the observed behaviors.

2.
Nat Photonics ; 11(2): 102-107, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28168000

RESUMEN

Domain walls are topological defects which occur at symmetry-breaking phase transitions. While domain walls have been intensively studied in ferromagnetic materials, where they nucleate at the boundary of neighbouring regions of oppositely aligned magnetic dipoles, their equivalent in optics have not been fully explored so far. Here, we experimentally demonstrate the existence of a universal class of polarization domain walls in the form of localized polarization knots in conventional optical fibres. We exploit their binding properties for optical data transmission beyond the Kerr limits of normally dispersive fibres. In particular, we demonstrate how trapping energy in well-defined train of polarization domain walls allows undistorted propagation of polarization knots at a rate of 28 GHz along a 10 km length of normally dispersive optical fibre. These results constitute the first experimental observation of kink-antikink solitary wave propagation in nonlinear fibre optics.

3.
Opt Express ; 24(22): 24921-24929, 2016 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-27828432

RESUMEN

We theoretically and experimentally investigate the design of an all-optical magnification and sampling function free from any active gain medium or additional amplified spontaneous noise emission. The proposed technique is based on the co-propagation of an arbitrary shaped signal together with an orthogonally polarized intense fast sinusoidal beating within a normally dispersive optical fiber. This process allows us to experimentally demonstrate a 40-GHz sampling operation as well as an 8-dB magnification of an arbitrary shaped nanosecond signal around 1550 nm in a 5-km long optical fiber. The experimental observations are in good agreement with numerical and theoretical analysis.

4.
Nat Commun ; 5: 4678, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25135759

RESUMEN

Recent research has been focused on the ability to manipulate a light beam in such a way to hide, namely to cloak, an event over a finite time or localization in space. The main idea is to create a hole or a gap in the spatial or time domain so as to allow for an object or data to be kept hidden for a while and then to be restored. By enlarging the field of applications of this concept to telecommunications, researchers have recently reported the possibility to hide transmitted data in an optical fibre. Here we report the first experimental demonstration of perpetual temporal spying and blinding process of optical data in fibre-optic transmission line based on polarization bypass. We successfully characterize the performance of our system by alternatively copying and then concealing 100% of a 10-Gb s(-1) transmitted signal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA