Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Macromol Rapid Commun ; 45(10): e2400027, 2024 May.
Article En | MEDLINE | ID: mdl-38413001

In this work, two structurally different monoamines (trimethylamine [TMA] and N-methylpiperidine [N-MPip]) are used for the amination of a g-VBC-15 graft copolymer, obtained by the functionalization of a mechanically robust, commercially available styrene-butadiene block copolymer (SB) with vinylbenzyl chloride (VBC) via solution free-radical polymerization. Results demonstrate that g-VBC-15-based membranes quaternized with TMA have superior electrochemical performance than N-MPip counterparts; while, the mechanical properties are good and only slightly inferior to those of N-MPip. Therefore, TMA is the selected monoamine to be alternatively mixed with two polyamines (tetramethyl-1,3-propanediamine [TMPDA] and N,N,N',N'',N''-pentamethyldiethylenetriamine [PMDETA]) into different proportions, in order to modulate the average functionality of the amination mixture in terms of number of amine functional groups available for the quaternization reaction of the membranes. g-VBC-15-based membranes derived therefrom are extensively characterized to assess their thermal, mechanical, and ex situ electrochemical properties. Results indicate that membranes quaternized with a TMA/PMDETA mixture (90:10 in mole) display the highest conductivity among all the investigated membranes aminated with polyamine-based mixtures. Moreover, they have comparable mechanical and electrochemical properties to those quaternized with TMA, while exhibiting a reduced water uptake.


Amines , Electrolysis , Water , Water/chemistry , Amines/chemistry , Molecular Structure , Membranes, Artificial , Polymerization , Polymers/chemistry
2.
ACS Appl Nano Mater ; 6(17): 15551-15562, 2023 Sep 08.
Article En | MEDLINE | ID: mdl-37706068

The unique self-assembly properties of unimer micelles are exploited for the preparation of fluorescent nanocarriers embedding hydrophobic fluorophores. Unimer micelles are constituted by a (meth)acrylate copolymer with oligoethyleneglycol and perflurohexylethyl side chains (PEGMA90-co-FA10) in which the hydrophilic and hydrophobic comonomers are statistically distributed along the polymeric backbone. Thanks to hydrophobic interactions in water, the amphiphilic copolymer forms small nanoparticles (<10 nm), with tunable properties and functionality. An easy procedure for the encapsulation of a small hydrophobic molecule (C153 fluorophore) within unimer micelles is presented. UV-vis, fluorescence, and fluorescence anisotropy spectroscopic experimental data demonstrate that the fluorophore is effectively embedded in the nanocarriers. Moreover, the nanocarrier positively contributes to preserve the good emissive properties of the fluorophore in water. The efficacy of the dye-loaded nanocarrier as a fluorescent probe is tested in two-photon imaging of thick ex vivo porcine scleral tissue.

3.
Pharmaceutics ; 15(6)2023 Jun 10.
Article En | MEDLINE | ID: mdl-37376151

Amphiphilic copolymer self-assembly is a straightforward approach to obtain responsive micelles, nanoparticles, and vesicles that are particularly attractive for biomedicine, i.e., for the delivery of functional molecules. Here, amphiphilic copolymers of hydrophobic polysiloxane methacrylate and hydrophilic oligo (ethylene glycol) methyl ether methacrylate with different lengths of oxyethylenic side chains were synthesized via controlled RAFT radical polymerization and characterized both thermally and in solution. In particular, the thermoresponsive and self-assembling behavior of the water-soluble copolymers in water was investigated via complementary techniques such as light transmittance, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) measurements. All the copolymers synthesized were thermoresponsive, displaying a cloud point temperature (Tcp) strongly dependent on macromolecular parameters such as the length of the oligo(ethylene glycol) side chains and the content of the SiMA counits, as well as the concentration of the copolymer in water, which is consistent with a lower critical solution temperature (LCST)-type behavior. SAXS analysis revealed that the copolymers formed nanostructures in water below Tcp, whose dimension and shape depended on the content of the hydrophobic components in the copolymer. The hydrodynamic diameter (Dh) determined by DLS increased with the amount of SiMA and the associated morphology at higher SiMA contents was found to be pearl-necklace-micelle-like, composed of connected hydrophobic cores. These novel amphiphilic copolymers were able to modulate thermoresponsiveness in water in a wide range of temperatures, including the physiological temperature, as well as the dimension and shape of their nanostructured assemblies, simply by varying their chemical composition and the length of the hydrophilic side chains.

4.
Polymers (Basel) ; 15(8)2023 Apr 08.
Article En | MEDLINE | ID: mdl-37111973

In this work, a commercial SBS was functionalized with the 2,2,6,6-tetramethylpiperidin-N-oxyl stable radical (TEMPO) via free-radical activation initiated with benzoyl peroxide (BPO). The obtained macroinitiator was used to graft both vinylbenzyl chloride (VBC) and styrene/VBC random copolymer chains from SBS to create g-VBC-x and g-VBC-x-co-Sty-z graft copolymers, respectively. The controlled nature of the polymerization as well as the use of a solvent allowed us to reduce the extent of the formation of the unwanted, non-grafted (co)polymer, thereby facilitating the graft copolymer's purification. The obtained graft copolymers were used to prepare films via solution casting using chloroform. The -CH2Cl functional groups of the VBC grafts were then quantitatively converted to -CH2(CH3)3N+ quaternary ammonium groups via reaction with trimethylamine directly on the films, and the films, therefore, were investigated as anion exchange membranes (AEMs) for potential application in a water electrolyzer (WE). The membranes were extensively characterized to assess their thermal, mechanical, and ex situ electrochemical properties. They generally presented ionic conductivity comparable to or higher than that of a commercial benchmark as well as higher water uptake and hydrogen permeability. Interestingly, the styrene/VBC-grafted copolymer was found to be more mechanically resistant than the corresponding graft copolymer not containing the styrene component. For this reason, the copolymer g-VBC-5-co-Sty-16-Q with the best balance of mechanical, water uptake, and electrochemical properties was selected for a single-cell test in an AEM-WE.

5.
ACS Appl Mater Interfaces ; 15(8): 11150-11162, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36802475

Two types of amphiphilic random terpolymers, poly(ethylene glycol methyl ether methacrylate)-ran-poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate)-ran-poly(polydimethyl siloxane methacrylate) (PEGMEMA-r-PTMA-r-PDMSMA), were synthesized and evaluated for antifouling (AF) and fouling-release (FR) properties using diverse marine fouling organisms. In the first stage of production, the two respective precursor amine terpolymers containing (2,2,6,6-tetramethyl-4-piperidyl methacrylate) units (PEGMEMA-r-PTMPM-r-PDMSMA) were synthesized by atom transfer radical polymerization using various comonomer ratios and two initiators: alkyl halide and fluoroalkyl halide. In the second stage, these were selectively oxidized to introduce nitroxide radical functionalities. Finally, the terpolymers were incorporated into a PDMS host matrix to create coatings. AF and FR properties were examined using the alga Ulva linza, the barnacle Balanus improvisus, and the tubeworm Ficopomatus enigmaticus. The effects of comonomer ratios on surface properties and fouling assay results for each set of coatings are discussed in detail. There were marked differences in the effectiveness of these systems against the different fouling organisms. The terpolymers had distinct advantages over monopolymeric systems across the different organisms, and the nonfluorinated PEG and nitroxide combination was identified as the most effective formulation against B. improvisus and F. enigmaticus.

6.
Environ Sci Pollut Res Int ; 30(7): 18480-18490, 2023 Feb.
Article En | MEDLINE | ID: mdl-36215022

Since the banning of tributyltin, the addition of inorganic (metal oxides) and organic (pesticides, herbicides) biocides in antifouling paint has represented an unavoidable step to counteract biofouling and the resulting biodeterioration of submerged surfaces. Therefore, the development of new methods that balance antifouling efficacy with environmental impact has become a topic of great importance. Among several proposed strategies, natural extracts may represent one of the most suitable alternatives to the widely used toxic biocides. Posidonia oceanica is one of the most representative organisms of the Mediterranean Sea and contains hundreds of bioactive compounds. In this study, we prepared, characterized, and assessed a hydroalcoholic extract of P. oceanica and then compared it to three model species. Together, these four species belong to relevant groups of biofoulers: bacteria (Aliivibrio fischeri), diatoms (Phaeodactylum tricornutum), and serpulid polychaetes (Ficopomatus enigmaticus). We also added the same P. oceanica extract to a PDMS-based coating formula. We tested this coating agent with Navicula salinicola and Ficopomatus enigmaticus to evaluate both its biocidal performance and its antifouling properties. Our results indicate that our P. oceanica extract provides suitable levels of protection against all the tested organisms and significantly reduces adhesion of N. salinicola cells and facilitates their release in low-intensity waterflows.


Alismatales , Biofouling , Diatoms , Disinfectants , Herbicides , Disinfectants/toxicity , Biofouling/prevention & control , Plant Extracts
7.
Polymers (Basel) ; 14(21)2022 Oct 28.
Article En | MEDLINE | ID: mdl-36365584

Hydrolyzable block copolymers consisting of a polyethylene glycol (PEG) first block and a random poly(trialkylsilyl methacrylate (TRSiMA, R = butyl, isopropyl)-co-methyl methacrylate (MMA)) second block were synthesized by RAFT polymerization. Two PEGs with different molar masses (Mn = 750 g/mol (PEG1) and 2200 g/mol (PEG2)) were used as macro-chain transfer agents and the polymerization conditions were set in order to obtain copolymers with a comparable mole content of trialkylsilyl methacrylate (~30 mole%) and two different PEG mole percentages of 10 and 30 mole%. The hydrolysis rates of PEG-b-(TRSiMA-co-MMA) in a THF/basic (pH = 10) water solution were shown to drastically depend on the nature of the trialkylsilyl groups and the mole content of the PEG block. Films of selected copolymers were also found to undergo hydrolysis in artificial seawater (ASW), with tunable erosion kinetics that were modulated by varying the copolymer design. Measurements of the advancing and receding contact angles of water as a function of the immersion time in the ASW confirmed the ability of the copolymer film surfaces to respond to the water environment as a result of two different mechanisms: (i) the hydrolysis of the silylester groups that prevailed in TBSiMA-based copolymers; and (ii) a major surface exposure of hydrophilic PEG chains that was predominant for TPSiMA-based copolymers. AFM analysis revealed that the surface nano-roughness increased upon immersion in ASW. The erosion of copolymer film surfaces resulted in a self-polishing, antifouling behavior against the diatom Navicula salinicola. The amount of settled diatoms depended on the hydrolysis rate of the copolymers.

8.
Environ Res ; 211: 113094, 2022 08.
Article En | MEDLINE | ID: mdl-35292241

Microplastic (MP) pollution represents a distinctive mark of the Anthropocene. Despite the increasing efforts to determine the ecological impacts of MP on marine biodiversity, our understanding of their toxicological effects on invertebrate species is still limited. Despite their key functional roles, sponges (Phylum Porifera) are particularly understudied in MP research. These filter-feeders extract and retain particles from the water column, across a broad size range. In this study, we carried out a laboratory experiment to assess the uptake of MPs (polyethylene, PE) by the Mediterranean sponge Petrosia ficiformis, how MPs influence key biological process after different times of exposure (24h and 72h) and whether they can be subsequently eliminated. MP uptake increased with time of exposure, with 30.6% of the inoculated MP particles found in sponge samples after 72h. MPs impaired filtration and respiration rates and these effects were still evident 72h after sponges had been transferred in uncontaminated water. Our study shows that time of exposure represents a key factor in determining MP toxicity in sponges. In addition, our results suggest that sponges are able to incorporate foreign particles and may thus be a potential bioindicator for MP pollutants.


Petrosia , Water Pollutants, Chemical , Animals , Environmental Monitoring , Microplastics , Plastics , Polyethylene , Respiratory Rate , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
9.
Polymers (Basel) ; 14(4)2022 Feb 16.
Article En | MEDLINE | ID: mdl-35215686

Water-soluble amphiphilic random copolymers composed of tri(ethylene glycol) methacrylate (TEGMA) or poly(ethylene glycol) methyl ether methacrylate (PEGMA) and perfluorohexylethyl acrylate (FA) were synthesized by ARGET-ATRP, and their self-assembling and thermoresponsive behavior in water was studied by dynamic light scattering (DLS) and UV-vis spectroscopy. The copolymer ability to self-fold in single-chain nano-sized structures (unimer micelles) in aqueous solutions was exploited to encapsulate Combretastatin A-4 (CA-4), which is a very hydrophobic anticancer drug. The cloud point temperature (Tcp) was found to linearly decrease with increasing drug concentration in the drug/copolymer system. Moreover, while CA-4 was preferentially incorporated into the unimer micelles of TEGMA-ran-FA, the drug was found to induce multi-chain, submicro-sized aggregation of PEGMA-ran-FA. Anyway, the encapsulation efficiency was very high (≥81%) for both copolymers. The drug release was evaluated in PBS aqueous solutions both below and above Tcp for TEGMA-ran-FA copolymer and below Tcp, but at two different drug loadings, for PEGMA-ran-FA copolymer. In any case, the release kinetics presented similar profiles, characterized by linear trends up to ≈10-13 h and ≈7 h for TEGMA-ran-FA and PEGMA-ran-FA, respectively. Then, the release rate decreased, reaching a plateau. The release from TEGMA-ran-FA was moderately faster above Tcp than below Tcp, suggesting that copolymer thermoresponsiveness increased the release rate, which occurred anyway by diffusion below Tcp. Cytotoxicity tests were carried out on copolymer solutions in a wide concentration range (5-60 mg/mL) at 37 °C by using Balb/3T3 clone A31 cells. Interestingly, it was found that the concentration-dependent micro-sized aggregation of the amphiphilic random copolymers above Tcp caused a sort of "cellular asphyxiation" with a loss of cell viability clearly visible for TEGMA-ran-FA solutions (Tcp below 37 °C) with higher copolymer concentrations. On the other hand, cells in contact with the analogous PEGMA-ran-FA (Tcp above 37 °C) presented a very good viability (≥75%) with respect to the control at any given concentration.

10.
J Am Chem Soc ; 143(45): 19067-19077, 2021 11 17.
Article En | MEDLINE | ID: mdl-34738797

Many synthetic polymers used to form polymer-brush films feature a main backbone with functional, oligomeric side chains. While the structure of such graft polymers mimics biomacromolecules to an extent, it lacks the monodispersity and structural purity present in nature. Here we demonstrate that side-chain heterogeneity within graft polymers significantly influences hydration and the occurrence of hydrophobic interactions in the subsequently formed brushes and consequently impacts fundamental interfacial properties. This is demonstrated for the case of poly(methacrylate)s (PMAs) presenting oligomeric side chains of different length (n) and dispersity. A precise tuning of brush structure was achieved by first synthesizing oligo(2-ethyl-2-oxazoline) methacrylates (OEOXMAs) by cationic ring-opening polymerization (CROP), subsequently purifying them into discrete macromonomers with distinct values of n by column chromatography, and finally obtaining poly[oligo(2-ethyl-2-oxazoline) methacrylate]s (POEOXMAs) by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Assembly of POEOXMA on Au surfaces yielded graft polymer brushes with different side-chain dispersities and lengths, whose properties were thoroughly investigated by a combination of variable angle spectroscopic ellipsometry (VASE), quartz crystal microbalance with dissipation (QCMD), and atomic force microscopy (AFM) methods. Side-chain dispersity, or dispersity within brushes, leads to assemblies that are more hydrated, less adhesive, and more lubricious and biopassive compared to analogous films obtained from graft polymers characterized by a homogeneous structure.

11.
Polymers (Basel) ; 13(19)2021 Oct 05.
Article En | MEDLINE | ID: mdl-34641229

Poly(ethyl ethylene phosphonate)-based methacrylic copolymers containing polysiloxane methacrylate (SiMA) co-units are proposed as surface-active additives as alternative solutions to the more investigated polyzwitterionic and polyethylene glycol counterparts for the fabrication of novel PDMS-based coatings for marine antifouling applications. In particular, the same hydrophobic SiMA macromonomer was copolymerized with a methacrylate carrying a poly(ethyl ethylene phosphonate) (PEtEPMA), a phosphorylcholine (MPC), and a poly(ethylene glycol) (PEGMA) side chain to obtain non-water soluble copolymers with similar mole content of the different hydrophilic units. The hydrolysis of poly(ethyl ethylene phosphonate)-based polymers was also studied in conditions similar to those of the marine environment to investigate their potential as erodible films. Copolymers of the three classes were blended into a condensation cure PDMS matrix in two different loadings (10 and 20 wt%) to prepare the top-coat of three-layer films to be subjected to wettability analysis and bioassays with marine model organisms. Water contact angle measurements showed that all of the films underwent surface reconstruction upon prolonged immersion in water, becoming much more hydrophilic. Interestingly, the extent of surface modification appeared to be affected by the type of hydrophilic units, showing a tendency to increase according to the order PEGMA < MPC < PEtEPMA. Biological tests showed that Ficopomatus enigmaticus release was maximized on the most hydrophilic film containing 10 wt% of the PEtEP-based copolymer. Moreover, coatings with a 10 wt% loading of the copolymer performed better than those containing 20 wt% for the removal of both Ficopomatus and Navicula, independent from the copolymer nature.

12.
J Mater Chem B ; 8(42): 9764-9776, 2020 11 04.
Article En | MEDLINE | ID: mdl-33021610

Amphiphilic methacrylate copolymers (Si-co-EF) containing polysiloxane (Si) and mixed poly(oxyethylene)-perfluorohexyl (EF) side chains were synthesized with different compositions and used together with polysiloxane-functionalized nanoparticles as additives of condensation cured nanocomposite poly(siloxane) films. The mechanical properties of the nanocomposite films were consistent with the elastomeric behavior of the poly(siloxane) matrix without significant detriment from either the copolymer or the nanoparticles. Films were found to be markedly hydrophobic and liphophobic, with both properties being maximized at an intermediate content of EF units. The high enrichment in fluorine at the film surface was proven by angle-resolved X-ray photoelectron spectroscopy (AR-XPS). Long-term marine antifouling performance was evaluated in field immersion trials of test panels for up to 10 months of immersion. Both nanoparticles and amphiphilic copolymer were found to be highly effective in reducing the colonization of foulants, especially hard macrofoulants, when compared with control panels. Lowest percentage of surface coverage was 20% after 10 months of immersion (films with 4 wt% copolymer and 0.5 wt% nanoparticles), which was further decreased to less than 10% after exposure to a water jet for 10 s. The enhanced antifouling properties of coatings containing both nanoparticles and copolymer were confirmed by laboratory assays against the polychaete Ficopomatus enigmaticus and the diatom Navicula salinicola.


Biofouling/prevention & control , Dimethylpolysiloxanes/chemistry , Nanocomposites/chemistry , Surface-Active Agents/chemistry , Animals , Diatoms/chemistry , Polychaeta/chemistry , Polyethylene Glycols/chemistry , Siloxanes/chemistry , Surface Properties
13.
Polymers (Basel) ; 12(6)2020 May 29.
Article En | MEDLINE | ID: mdl-32485870

Diblock copolymers composed of a polystyrene first block and a PEG-fluoroalkyl chain-modified polystyrene second block were synthesized by controlled atom transfer radical polymerization (ATRP), starting from the same polystyrene macroinitiator. The wettability of the polymer film surfaces was investigated by measurements of static and dynamic contact angles. An increase in advancing water contact angle was evident for all the films after immersion in water for short times (10 and 1000 s), consistent with an unusual contraphilic switch of the PEG-fluoroalkyl side chains. Such a contraphilic response also accounted for the retained wettability of the polymer films upon prolonged contact with water, without an anticipated increase in the hydrophilic character. The copolymers were then used as surface-active modifiers of elastomer poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS)-based two-layer films. The elastomeric behavior of the films was varied by using SEBS matrices with different amounts of polystyrene. Whereas the mechanical properties strictly resembled those of the nature of the SEBS matrix, the surface properties were imposed by the additive. The contraphilic switch of the PEG-fluoroalkyl side chains resulted in an exceptionally high enrichment in fluorine of the film surface after immersion in water for seven days.

14.
Biofouling ; 36(4): 378-388, 2020 04.
Article En | MEDLINE | ID: mdl-32425065

Poly(dimethylsiloxane) (PDMS) elastomer coatings containing an amphiphilic hydrolyzable diblock copolymer additive were prepared and their potential as marine antifouling and antiadhesion materials was tested. The block copolymer additive consisted of a PDMS first block and a random poly(trialkylsilyl methacrylate (TRSiMA, R = butyl, isopropyl)-co-poly(ethyleneglycol) methacrylate (PEGMA) copolymer second block. PDMS-b-TRSiMA block copolymer additives without PEGMA units were also used as additives. The amphiphilic character of the coating surface was assessed in water using the captive air bubble technique for measurements of static and dynamic contact angles. The attachment of macro- and microorganisms on the coatings was evaluated by field tests and by performing adhesion tests to the barnacle Amphibalanus amphitrite and the green alga Ulva rigida. All the additive-based PDMS coatings showed better antiadhesion properties to A. amphitrite larvae than to U. rigida spores. Field tests provided meaningful information on the antifouling and fouling release activity of coatings over an immersion period of 23 months.


Biofouling , Polyethylene Glycols , Animals , Dimethylpolysiloxanes , Methacrylates , Surface Properties
15.
Polymers (Basel) ; 12(2)2020 Feb 10.
Article En | MEDLINE | ID: mdl-32050664

Fluorinated (F6) and zwitterionic, as well as phosphorylcholine (MPC) and sulfobetaine (MSA), copolymers containing a low amount (1 and 5 mol%) of 3-(trimethoxysilyl)propyl methacrylate (PTMSi) were prepared and covalently grafted to glass slides by using the trimethoxysilyl groups as anchorage points. Glass-surface functionalization and polymer-film stability upon immersion in water were proven by contact angle and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) measurements. Antifouling performance of the grafted films was assayed against the yeast Candida albicans, the most common Candida species, which causes over 80% of candidiasis. Results revealed that the F6 fluorinated, hydrophobic copolymers performed much better in reducing the adhesion of C. albicans, with respect to both corresponding zwitterionic, hydrophilic MPC and MSA counterparts, and were similar to the glass negative control, which is well-known to inhibit the adhesion of C. albicans. A composition-dependent activity was also found, with the films of copolymer with 99 mol% F6 fluorinated co-units performing best.

16.
Article En | MEDLINE | ID: mdl-30386778

Two novel epoxide hydrolases (EHs), Sibe-EH and CH65-EH, were identified in the metagenomes of samples collected in hot springs in Russia and China, respectively. The two α/ß hydrolase superfamily fold enzymes were cloned, over-expressed in Escherichia coli, purified and characterized. The new EHs were active toward a broad range of substrates, and in particular, Sibe-EH was excellent in the desymmetrization of cis-2,3-epoxybutane producing the (2R,3R)-diol product with ee exceeding 99%. Interestingly these enzymes also hydrolyse (4R)-limonene-1,2-epoxide with Sibe-EH being specific for the trans isomer. The Sibe-EH is a monomer in solution whereas the CH65-EH is a dimer. Both enzymes showed high melting temperatures with the CH65-EH being the highest at 85°C retaining 80% of its initial activity after 3 h thermal treatment at 70°C making it the most thermal tolerant wild type epoxide hydrolase described. The Sibe-EH and CH65-EH have been crystallized and their structures determined to high resolution, 1.6 and 1.4 Å, respectively. The CH65-EH enzyme forms a dimer via its cap domains with different relative orientation of the monomers compared to previously described EHs. The entrance to the active site cavity is located in a different position in CH65-EH and Sibe-EH in relation to other known bacterial and mammalian EHs.

...