Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Cardiovasc Magn Reson ; 21(1): 11, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30728035

RESUMEN

BACKGROUND: Our objectives were first to determine the optimal coronary computed tomography angiography (CTA) protocol for the quantification and detection of simulated coronary artery cross-sectional area (CSA) differences in vitro, and secondly to quantitatively compare the performance of the optimized CTA protocol with a previously validated radial coronary cardiovascular magnetic resonance (CMR) technique. METHODS: 256-multidetector CTA and radial coronary CMR were used to obtain images of a custom in vitro resolution phantom simulating a range of physiological responses of coronary arteries to stress. CSAs were automatically quantified and compared with known nominal values to determine the accuracy, precision, signal-to-noise ratio (SNR), and circularity of CSA measurements, as well as the limit of detection (LOD) of CSA differences. Various iodine concentrations, radiation dose levels, tube potentials, and iterative image reconstruction algorithms (ASiR-V) were investigated to determine the optimal CTA protocol. The performance of the optimized CTA protocol was then compared with a radial coronary CMR method previously developed for endothelial function assessment under both static and moving conditions. RESULTS: The iodine concentration, dose level, tube potential, and reconstruction algorithm all had significant effects (all p <  0.001) on the accuracy, precision, LOD, SNR, and circularity of CSA measurements with CTA. The best precision, LOD, SNR, and circularity with CTA were achieved with 6% iodine, 20 mGy, 100 kVp, and 90% ASiR-V. Compared with the optimized CTA protocol under static conditions, radial coronary CMR was less accurate (- 0.91 ± 0.13 mm2 vs. -0.35 ± 0.04 mm2, p <  0.001), but more precise (0.08 ± 0.02 mm2 vs. 0.21 ± 0.02 mm2, p <  0.001), and enabled the detection of significantly smaller CSA differences (0.16 ± 0.06 mm2 vs. 0.52 ± 0.04 mm2; p <  0.001; corresponding to CSA percentage differences of 2.3 ± 0.8% vs. 7.4 ± 0.6% for a 3-mm baseline diameter). The same results held true under moving conditions as CSA measurements with CMR were less affected by motion. CONCLUSIONS: Radial coronary CMR was more precise and outperformed CTA for the specific task of detecting small CSA differences in vitro, and was able to reliably identify CSA changes an order of magnitude smaller than those reported for healthy physiological vasomotor responses of proximal coronary arteries. However, CTA yielded more accurate CSA measurements, which may prove useful in other clinical scenarios, such as coronary artery stenosis assessment.


Asunto(s)
Angiografía por Tomografía Computarizada , Angiografía Coronaria/métodos , Vasos Coronarios/diagnóstico por imagen , Endotelio Vascular/diagnóstico por imagen , Imagen por Resonancia Magnética , Tomografía Computarizada Multidetector , Angiografía por Tomografía Computarizada/instrumentación , Medios de Contraste , Angiografía Coronaria/instrumentación , Circulación Coronaria , Humanos , Límite de Detección , Imagen por Resonancia Magnética/instrumentación , Meglumina , Tomografía Computarizada Multidetector/instrumentación , Compuestos Organometálicos , Fantasmas de Imagen , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Vasodilatación
2.
Magn Reson Med ; 79(1): 108-120, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28261859

RESUMEN

PURPOSE: MRI has been used to noninvasively assess coronary endothelial function by measuring the vasoreactivity in response to handgrip exercise. However, the spatial resolution of MRI is limited relative to the expected vasodilation response of healthy coronary arteries (10%-20%), and the sensitivity of MRI to detect such small cross-sectional area differences has yet to be quantitatively examined. METHODS: Holes of different diameters were drilled in a phantom to simulate a range of physiological responses of coronary arteries to stress. Radial cine MR images with different spatial resolutions were acquired under moving conditions, and different noise levels were simulated. Cross-sectional areas were automatically measured and statistically analyzed to quantify the smallest detectable area difference. RESULTS: Statistical analyses suggest that radial MRI is capable of distinguishing area differences of 0.2 to 0.3 mm2 for high signal-to-noise ratio images, which correspond to a percentage coronary area difference of 3% to 4% for a 3-mm baseline diameter. Furthermore, the smallest detectable area difference was largely independent of the pixel size for the sequence and range of diameters investigated in this study. CONCLUSION: Radial MRI is capable of reliably detecting small differences in cross-sectional areas that are well within the expected physiological range of stress-induced area changes in of healthy coronary arteries. Magn Reson Med 79:108-120, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Vasos Coronarios/diagnóstico por imagen , Endotelio Vascular/diagnóstico por imagen , Imagen por Resonancia Magnética , Fantasmas de Imagen , Algoritmos , Análisis de Varianza , Área Bajo la Curva , Circulación Coronaria , Humanos , Procesamiento de Imagen Asistido por Computador , Límite de Detección , Modelos Cardiovasculares , Modelos Estadísticos , Movimiento , Curva ROC , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Relación Señal-Ruido , Vasodilatación
3.
Anal Chem ; 85(7): 3539-44, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23432705

RESUMEN

Plasma catecholamines provide a reliable biomarker of sympathetic activity. The low circulating concentrations of catecholamines and analytical interferences require tedious sample preparation and long chromatographic runs to ensure their accurate quantification by HPLC with electrochemical detection. Published or commercially available methods relying on solid phase extraction technology lack sensitivity or require derivatization of catecholamine by hazardous reagents prior to tandem mass spectrometry (MS) analysis. Here, we manufactured a novel 96-well microplate device specifically designed to extract plasma catecholamines prior to their quantification by a new and highly sensitive ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Processing time, which included sample purification on activated aluminum oxide and elution, is less than 1 h per 96-well microplate. The UPLC-MS/MS analysis run time is 2.0 min per sample. This UPLC-MS/MS method does not require a derivatization step, reduces the turnaround time by 10-fold compared to conventional methods used for routine application, and allows catecholamine quantification in reduced plasma sample volumes (50-250 µL, e.g., from children and mice).


Asunto(s)
Catecolaminas/sangre , Ensayos Analíticos de Alto Rendimiento/instrumentación , Extracción en Fase Sólida/instrumentación , Adulto , Cromatografía Líquida de Alta Presión/métodos , Diseño de Equipo , Femenino , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Masculino , Persona de Mediana Edad , Tamaño de la Muestra , Sensibilidad y Especificidad , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...