Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-38009101

RESUMEN

Atypical protein kinase C (aPKC) is a major regulator of cell polarity. Acting in conjunction with Par6, Par3 and the small GTPase Cdc42, aPKC becomes asymmetrically localised and drives the polarisation of cells. aPKC activity is crucial for its own asymmetric localisation, suggesting a hitherto unknown feedback mechanism contributing to polarisation. Here we show in C. elegans zygotes that the feedback relies on CDC-42 phosphorylation at serine 71 by aPKC, which in turn results in aPKC dissociation from CDC-42. The dissociated aPKC then associates with PAR-3 clusters, which are transported anteriorly by actomyosin-based cortical flow. Moreover, the turnover of aPKC-mediated CDC-42 phosphorylation regulates the organisation of the actomyosin cortex that drives aPKC asymmetry. Given the widespread role of aPKC and Cdc42 in cell polarity, this form of self-regulation of aPKC may be vital for the robust polarisation of many cell types.

2.
Biotechnol J ; 18(10): e2300173, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37337924

RESUMEN

Magnetosomes are magnetite nanoparticles biosynthesized by magnetotactic bacteria. Given their potential clinical applications for the diagnosis and treatment of cancer, it is essential to understand what becomes of them once they are within the body. With this aim, here we have followed the intracellular long-term fate of magnetosomes in two cell types: cancer cells (A549 cell line), because they are the actual target for the therapeutic activity of the magnetosomes, and macrophages (RAW 264.7 cell line), because of their role at capturing foreign agents. It is shown that cells dispose of magnetosomes using three mechanisms: splitting them into daughter cells, excreting them to the surrounding environment, and degrading them yielding less or non-magnetic iron products. A deeper insight into the degradation mechanisms by means of time-resolved X-ray absorption near-edge structure (XANES) spectroscopy has allowed us to follow the intracellular biotransformation of magnetosomes by identifying and quantifying the iron species occurring during the process. In both cell types there is a first oxidation of magnetite to maghemite and then, earlier in macrophages than in cancer cells, ferrihydrite starts to appear. Given that ferrihydrite is the iron mineral phase stored in the cores of ferritin proteins, this suggests that cells use the iron released from the degradation of magnetosomes to load ferritin. Comparison of both cellular types evidences that macrophages are more efficient at disposing of magnetosomes than cancer cells, attributed to their role in degrading external debris and in iron homeostasis.


Asunto(s)
Magnetosomas , Neoplasias , Magnetosomas/química , Hierro/metabolismo , Ferritinas/análisis , Ferritinas/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo
3.
Philos Trans R Soc Lond B Biol Sci ; 375(1809): 20190555, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-32829680

RESUMEN

Cell polarity is the asymmetric distribution of cellular components along a defined axis. Polarity relies on complex signalling networks between conserved patterning proteins, including the PAR (partitioning defective) proteins, which become segregated in response to upstream symmetry breaking cues. Although the mechanisms that drive the asymmetric localization of these proteins are dependent upon cell type and context, in many cases the regulation of actomyosin cytoskeleton dynamics is central to the transport, recruitment and/or stabilization of these polarity effectors into defined subcellular domains. The transport or advection of PAR proteins by an actomyosin flow was first observed in the Caenorhabditis elegans zygote more than a decade ago. Since then a multifaceted approach, using molecular methods, high-throughput screens, and biophysical and computational models, has revealed further aspects of this flow and how polarity regulators respond to and modulate it. Here, we review recent findings on the interplay between actomyosin flow and the PAR patterning networks in the polarization of the C. elegans zygote. We also discuss how these discoveries and developed methods are shaping our understanding of other flow-dependent polarizing systems. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.


Asunto(s)
Actomiosina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Polaridad Celular , Embrión no Mamífero/embriología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Tipificación del Cuerpo/genética , Embrión no Mamífero/metabolismo , Transducción de Señal , Cigoto/crecimiento & desarrollo
4.
Nucleic Acids Res ; 48(9): 4891-4901, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32297955

RESUMEN

RNA polymerases initiate transcription at DNA sequences called promoters. In bacteria, the best conserved promoter feature is the AT-rich -10 element; a sequence essential for DNA unwinding. Further elements, and gene regulatory proteins, are needed to recruit RNA polymerase to the -10 sequence. Hence, -10 elements cannot function in isolation. Many horizontally acquired genes also have a high AT-content. Consequently, sequences that resemble the -10 element occur frequently. As a result, foreign genes are predisposed to spurious transcription. However, it is not clear how RNA polymerase initially recognizes such sequences. Here, we identify a non-canonical promoter element that plays a key role. The sequence, itself a short AT-tract, resides 5 base pairs upstream of otherwise cryptic -10 elements. The AT-tract alters DNA conformation and enhances contacts between the DNA backbone and RNA polymerase.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Transferencia de Gen Horizontal , Genes Bacterianos , Regiones Promotoras Genéticas , Activación Transcripcional , Secuencia Rica en At , Proteínas Bacterianas/metabolismo , ADN/química , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , Factor sigma/química , Factor sigma/metabolismo , Transcripción Genética
5.
Dev Cell ; 42(4): 400-415.e9, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28781174

RESUMEN

The conserved polarity effector proteins PAR-3, PAR-6, CDC-42, and atypical protein kinase C (aPKC) form a core unit of the PAR protein network, which plays a central role in polarizing a broad range of animal cell types. To functionally polarize cells, these proteins must activate aPKC within a spatially defined membrane domain on one side of the cell in response to symmetry-breaking cues. Using the Caenorhabditis elegans zygote as a model, we find that the localization and activation of aPKC involve distinct, specialized aPKC-containing assemblies: a PAR-3-dependent assembly that responds to polarity cues and promotes efficient segregation of aPKC toward the anterior but holds aPKC in an inactive state, and a CDC-42-dependent assembly in which aPKC is active but poorly segregated. Cycling of aPKC between these distinct functional assemblies, which appears to depend on aPKC activity, effectively links cue-sensing and effector roles within the PAR network to ensure robust establishment of polarity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Polaridad Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Cigoto/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...