Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Blood Adv ; 2024 Mar 24.
Article En | MEDLINE | ID: mdl-38522092

Megakaryocytes, integral to platelet production, predominantly reside in the bone marrow and undergo regulated fragmentation within sinusoid vessels to release platelets into the bloodstream. Inflammatory states and infections influence megakaryocyte transcription, potentially affecting platelet functionality. Notably, COVID-19 has been associated with altered platelet transcriptomes. In this study, we investigated the hypothesis that SARS-CoV-2 infection could impact the transcriptome of bone marrow megakaryocytes. Utilizing spatial transcriptomics to discriminate subpopulations of megakaryocytes based on proximity to bone marrow sinusoids, we identified approximately 19,000 genes in megakaryocytes. Machine learning techniques revealed that the transcriptome of healthy murine bone marrow megakaryocytes exhibited minimal differences based on proximity to sinusoid vessels. Further, at peak SARS-CoV-2 viremia, when the disease primarily affected the lungs, megakaryocytes were not significantly different from those from healthy mice. Conversely, a significant divergence in the megakaryocyte transcriptome was observed during systemic inflammation, although SARS-CoV-2 RNA was never detected in bone marrow and it was no longer detectable in the lungs. Under these conditions, the megakaryocyte transcriptional landscape was enriched in pathways associated with histone modifications, megakaryocyte differentiation, NETosis, and autoimmunity, which could not be explained by cell proximity to sinusoid vessels. Notably, the type-I interferon signature and calprotectin (S100A8/A9) were not induced in megakaryocytes under any condition. However, inflammatory cytokines induced in the blood and lungs of COVID-19 mice were different from those found in the bone marrow, suggesting a discriminating impact of inflammation on this specific subset of cells. Collectively, our data indicate that a new population of bone marrow megakaryocytes may emerge through COVID-19-related pathogenesis.

2.
Commun Biol ; 7(1): 191, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38365933

The persistence of SARS-CoV-2 despite the development of vaccines and a degree of herd immunity is partly due to viral evolution reducing vaccine and treatment efficacy. Serial infections of wild-type (WT) SARS-CoV-2 in Balb/c mice yield mouse-adapted strains with greater infectivity and mortality. We investigate if passaging unmodified B.1.351 (Beta) and B.1.617.2 (Delta) 20 times in K18-ACE2 mice, expressing the human ACE2 receptor, in a BSL-3 laboratory without selective pressures, drives human health-relevant evolution and if evolution is lineage-dependent. Late-passage virus causes more severe disease, at organism and lung tissue scales, with late-passage Delta demonstrating antibody resistance and interferon suppression. This resistance co-occurs with a de novo spike S371F mutation, linked with both traits. S371F, an Omicron-characteristic mutation, is co-inherited at times with spike E1182G per Nanopore sequencing, existing in different within-sample viral variants at others. Both S371F and E1182G are linked to mammalian GOLGA7 and ZDHHC5 interactions, which mediate viral-cell entry and antiviral response. This study demonstrates SARS-CoV-2's tendency to evolve with phenotypic consequences, its evolution varying by lineage, and suggests non-dominant quasi-species contribution.


Angiotensin-Converting Enzyme 2 , COVID-19 , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/genetics , Mice, Inbred BALB C , Mammals
3.
Viruses ; 15(2)2023 01 24.
Article En | MEDLINE | ID: mdl-36851549

COVID-19 is associated with robust inflammation and partially impaired antiviral responses. The modulation of inflammatory gene expression by SARS-CoV-2 is not completely understood. In this study, we characterized the inflammatory and antiviral responses mounted during SARS-CoV-2 infection. K18-hACE2 mice were infected with a Wuhan-like strain of SARS-CoV-2, and the transcriptional and translational expression interferons (IFNs), cytokines, and chemokines were analyzed in mouse lung homogenates. Our results show that the infection of mice with SARS-CoV-2 induces the expression of several pro-inflammatory CC and CXC chemokines activated through NF-κB but weakly IL1ß and IL18 whose expression are more characteristic of inflammasome formation. We also observed the downregulation of several inflammasome effectors. The modulation of innate response, following expressions of non-structural protein 2 (Nsp2) and SARS-CoV-2 infection, was assessed by measuring IFNß expression and NF-κB modulation in human pulmonary cells. A robust activation of the NF-κB p65 subunit was induced following the infection of human cells with the corresponding NF-κB-driven inflammatory signature. We identified that Nsp2 expression induced the activation of the IFNß promoter through its NF-κB regulatory domain as well as activation of p65 subunit phosphorylation. The present studies suggest that SARS-CoV-2 skews the antiviral response in favor of an NF-κB-driven inflammatory response, a hallmark of acute COVID-19 and for which Nsp2 should be considered an important contributor.


COVID-19 , NF-kappa B , Animals , Humans , Mice , Antiviral Agents , Inflammasomes , Inflammation , SARS-CoV-2
4.
Front Immunol ; 13: 893792, 2022.
Article En | MEDLINE | ID: mdl-35812400

Coronavirus disease 19 (COVID-19) is the clinical manifestation of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection. A hallmark of COVID-19 is a lung inflammation characterized by an abundant leukocyte infiltrate, elevated levels of cytokines/chemokines, lipid mediators of inflammation (LMI) and microthrombotic events. Animal models are useful for understanding the pathophysiological events leading to COVID-19. One such animal model is the K18-ACE2 transgenic mice. Despite their importance in inflammation, the study of LMI in lung of SARS-CoV-2 infected K18-ACE2 mice has yet to be studied to our knowledge. Using tandem mass spectrometry, the lung lipidome at different time points of infection was analyzed. Significantly increased LMI included N-oleoyl-serine, N-linoleoyl-glycine, N-oleoyl-alanine, 1/2-linoleoyl-glycerol, 1/2-docosahexaenoyl-glycerol and 12-hydroxy-eicosapenatenoic acid. The levels of prostaglandin (PG) E1, PGF2α, stearoyl-ethanolamide and linoleoyl-ethanolamide were found to be significantly reduced relative to mock-infected mice. Other LMI were present at similar levels (or undetected) in both uninfected and infected mouse lungs. In parallel to LMI measures, transcriptomic and cytokine/chemokine profiling were performed. Viral replication was robust with maximal lung viral loads detected on days 2-3 post-infection. Lung histology revealed leukocyte infiltration starting on day 3 post-infection, which correlated with the presence of high concentrations of several chemokines/cytokines. At early times post-infection, the plasma of infected mice contained highly elevated concentration of D-dimers suggestive of blood clot formation/dissolution. In support, the presence of blood clots in the lung vasculature was observed during infection. RNA-Seq analysis of lung tissues indicate that SARS-CoV-2 infection results in the progressive modulation of several hundred genes, including several inflammatory mediators and genes related to the interferons. Analysis of the lung lipidome indicated modest, yet significant modulation of a minority of lipids. In summary, our study suggests that SARS-CoV-2 infection in humans and mice share common features, such as elevated levels of chemokines in lungs, leukocyte infiltration and increased levels of circulating D-dimers. However, the K18-ACE2 mouse model highlight major differences in terms of LMI being produced in response to SARS-CoV-2 infection. The potential reasons and impact of these differences on the pathology and therapeutic strategies to be employed to treat severe COVID-19 are discussed.


COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Chemokines , Cytokines , Disease Models, Animal , Inflammation/pathology , Inflammation Mediators , Lipids , Lung/pathology , Mice , Mice, Transgenic
5.
J Mech Behav Biomed Mater ; 134: 105365, 2022 10.
Article En | MEDLINE | ID: mdl-35863297

Contraction assay based on surface measurement have been widely used to evaluate cell contractility in 3D models. This method is straightforward and requires no specific equipment, but it does not provide quantitative data about contraction forces generated by cells. We expanded this method with a new biomechanical model, based on the work-energy theorem, to provide non-destructive longitudinal monitoring of contraction forces generated by cells in 3D. We applied this method on hydrogels seeded with either fibroblasts or osteoblasts. Hydrogel mechanical characteristics were modulated to enhance (condition HCAHigh: hydrogel contraction assay high contraction) or limit (condition HCALow: hydrogel contraction assay low contraction) cell contractile behaviors. Macroscopic measures were further correlated with cell contractile behavior and descriptive analysis of their physiology in response to different mechanical environments. Fibroblasts and osteoblasts contracted their matrix up to 47% and 77% respectively. Contraction stress peaked at day 5 with 1.1 10-14 Pa for fibroblasts and 3.5 10-14 Pa for osteoblasts, which correlated with cell attachment and spreading. Negligible contraction was seen in HCALow. Both fibroblasts and osteoblasts expressed α-SMA contractile fibers in HCAHigh and HCALow. Failure to contract HCALow was attributed to increased cross-linking and resistance to proteolytic degradation of the hydrogel.


Hydrogels , Mechanical Phenomena , Fibroblasts , Muscle Contraction
6.
Int J Mol Sci ; 22(8)2021 Apr 15.
Article En | MEDLINE | ID: mdl-33921088

Novel nanomedicines have been engineered to deliver molecules with therapeutic potentials, overcoming drawbacks such as poor solubility, toxicity or short half-life. Lipid-based carriers such as liposomes represent one of the most advanced classes of drug delivery systems. A Monomethyl Auristatin E (MMAE) warhead was grafted on a lipid derivative and integrated in fusogenic liposomes, following the model of antibody drug conjugates. By modulating the liposome composition, we designed a set of particles characterized by different membrane fluidities as a key parameter to obtain selective uptake from fibroblast or prostate tumor cells. Only the fluid liposomes made of palmitoyl-oleoyl-phosphatidylcholine and dioleoyl-phosphatidylethanolamine, integrating the MMAE-lipid derivative, showed an effect on prostate tumor PC-3 and LNCaP cell viability. On the other hand, they exhibited negligible effects on the fibroblast NIH-3T3 cells, which only interacted with rigid liposomes. Therefore, fluid liposomes grafted with MMAE represent an interesting example of drug carriers, as they can be easily engineered to promote liposome fusion with the target membrane and ensure drug selectivity.


Oligopeptides/pharmacology , Prostatic Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Humans , Liposomes , Male , Membrane Fluidity/drug effects , Mice , NIH 3T3 Cells , Particle Size , Time Factors , Triglycerides/chemistry
7.
Anal Bioanal Chem ; 413(5): 1337-1351, 2021 Feb.
Article En | MEDLINE | ID: mdl-33410976

Sulfur mustard (SM), a chemical warfare agent, is a strong alkylating compound that readily reacts with numerous biomolecules. The goal of the present work was to define and validate new biomarkers of exposure to SM that could be easily accessible in urine or plasma. Because investigations using SM are prohibited by the Organisation for the Prohibition of Chemical Weapons, we worked with 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM. We developed an ultra-high-pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) approach to the conjugate of CEES to glutathione and two of its metabolites: the cysteine and the N-acetylcysteine conjugates. The N7-guanine adduct of CEES (N7Gua-CEES) was also targeted. After synthesizing the specific biomarkers, a solid-phase extraction protocol and a UHPLC-MS/MS method with isotopic dilution were optimized. We were able to quantify N7Gua-CEES in the DNA of HaCaT keratinocytes and of explants of human skin exposed to CEES. N7Gua-CEES was also detected in the culture medium of these two models, together with the glutathione and the cysteine conjugates. In contrast, the N-acetylcysteine conjugate was not detected. The method was then applied to plasma from mice cutaneously exposed to CEES. All four markers could be detected. Our present results thus validate both the analytical technique and the biological relevance of new, easily quantifiable biomarkers of exposure to CEES. Because CEES behaves very similar to SM, the results are promising for application to this toxic of interest.


Chemical Warfare Agents/adverse effects , Glutathione/analogs & derivatives , Guanine/analogs & derivatives , Mustard Gas/analogs & derivatives , Animals , Cell Line , Chemical Warfare Agents/analysis , Chromatography, High Pressure Liquid/methods , Environmental Exposure/adverse effects , Glutathione/adverse effects , Guanine/adverse effects , Humans , Keratinocytes/drug effects , Mice , Mustard Gas/adverse effects , Mustard Gas/analysis , Skin/drug effects , Tandem Mass Spectrometry/methods , Toxicity Tests/methods
8.
Toxicol In Vitro ; 63: 104744, 2020 Mar.
Article En | MEDLINE | ID: mdl-31836489

Skin has the potential to be exposed to both solar UV radiation and polycyclic aromatic hydrocarbons, especially in occupational environments. In the present work, we investigated how benzo[a]pyrene (B[a]P) modulates cellular phototoxicity and impacts formation and repair of pyrimidine dimers induced by simulated sunlight (SSL) in normal human keratinocytes (NHK). We were especially interested in determining whether the aryl hydrocarbon receptor (AhR) was involved since it was recently shown to negatively impact repair. Addition of 1 µM B[a]P after exposure to 2 minimal erythemal doses of SSL had little impact on NHK. The inverse protocol involving incubation with B[a]P followed by irradiation led to a strong increase in phototoxicity. Repair of DNA photoproducts was drastically impaired. Using agonists and antagonists of AhR allowed us to conclude that this factor was not involved in these results. Observation of a strong increase in the level of the oxidative marker 8-oxo-7,8-dihydroguanine in the protocol involving B[a]P treatment followed by exposure to SSL strongly suggested that a photosensitized oxidative stress was responsible for cell death and inhibition of DNA repair. Accordingly, both adverse effects were diminished with a lower concentration of B[a]P and a lower SSL dose, leading to less oxidative stress.


Benzo(a)pyrene/toxicity , Carcinogens/toxicity , Keratinocytes/drug effects , Keratinocytes/radiation effects , Sunlight/adverse effects , Adolescent , Adult , Basic Helix-Loop-Helix Transcription Factors , Cells, Cultured , DNA Repair , Dermatitis, Phototoxic , Female , Humans , Middle Aged , Pyrimidine Dimers , Receptors, Aryl Hydrocarbon , Young Adult
...