Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genet Med ; 26(2): 101028, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37978863

RESUMEN

PURPOSE: Persistent human papillomavirus infection (PHPVI) causes cutaneous, anogenital, and mucosal warts. Cutaneous warts include common warts, Treeman syndrome, and epidermodysplasia verruciformis, among others. Although more reports of monogenic predisposition to PHPVI have been published with the development of genomic technologies, genetic testing is rarely incorporated into clinical assessments. To encourage broader molecular testing, we compiled a list of the various monogenic etiologies of PHPVI. METHODS: We conducted a systematic literature review to determine the genetic, immunological, and clinical characteristics of patients with PHPVI. RESULTS: The inclusion criteria were met by 261 of 40,687 articles. In 842 patients, 83 PHPVI-associated genes were identified, including 42, 6, and 35 genes with strong, moderate, and weak evidence for causality, respectively. Autosomal recessive inheritance predominated (69%). PHPVI onset age was 10.8 ± 8.6 years, with an interquartile range of 5 to 14 years. GATA2,IL2RG,DOCK8, CXCR4, TMC6, TMC8, and CIB1 are the most frequently reported PHPVI-associated genes with strong causality. Most genes (74 out of 83) belong to a catalog of 485 inborn errors of immunity-related genes, and 40 genes (54%) are represented in the nonsyndromic and syndromic combined immunodeficiency categories. CONCLUSION: PHPVI has at least 83 monogenic etiologies and a genetic diagnosis is essential for effective management.


Asunto(s)
Epidermodisplasia Verruciforme , Infecciones por Papillomavirus , Verrugas , Humanos , Preescolar , Niño , Adolescente , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/genética , Verrugas/genética , Verrugas/complicaciones , Epidermodisplasia Verruciforme/genética , Epidermodisplasia Verruciforme/complicaciones , Piel , Síndrome , Proteínas de la Membrana/genética , Factores de Intercambio de Guanina Nucleótido
2.
J Immunol ; 211(2): 252-260, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37265402

RESUMEN

SARS-CoV-2 has caused an estimated 7 million deaths worldwide to date. A secreted SARS-CoV-2 accessory protein, known as open reading frame 8 (ORF8), elicits inflammatory pulmonary cytokine responses and is associated with disease severity in COVID-19 patients. Recent reports proposed that ORF8 mediates downstream signals in macrophages and monocytes through the IL-17 receptor complex (IL-17RA, IL-17RC). However, generally IL-17 signals are found to be restricted to the nonhematopoietic compartment, thought to be due to rate-limiting expression of IL-17RC. Accordingly, we revisited the capacity of IL-17 and ORF8 to induce cytokine gene expression in mouse and human macrophages and monocytes. In SARS-CoV-2-infected human and mouse lungs, IL17RC mRNA was undetectable in monocyte/macrophage populations. In cultured mouse and human monocytes and macrophages, ORF8 but not IL-17 led to elevated expression of target cytokines. ORF8-induced signaling was fully preserved in the presence of anti-IL-17RA/RC neutralizing Abs and in Il17ra-/- cells. ORF8 signaling was also operative in Il1r1-/- bone marrow-derived macrophages. However, the TLR/IL-1R family adaptor MyD88, which is dispensable for IL-17R signaling, was required for ORF8 activity yet MyD88 is not required for IL-17 signaling. Thus, we conclude that ORF8 transduces inflammatory signaling in monocytes and macrophages via MyD88 independently of the IL-17R.


Asunto(s)
COVID-19 , Sistemas de Lectura Abierta , SARS-CoV-2 , Animales , Humanos , Ratones , COVID-19/inmunología , COVID-19/virología , Citocinas/metabolismo , Macrófagos/metabolismo , Monocitos/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , SARS-CoV-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA