Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 140
1.
Cancer Res Commun ; 3(11): 2256-2267, 2023 11 08.
Article En | MEDLINE | ID: mdl-37870410

Long interspersed nuclear element-1 (LINE-1 or L1), the most abundant family of autonomous retrotransposons occupying over 17% of human DNA, is epigenetically silenced in normal tissues by the mechanisms involving p53 but is frequently derepressed in cancer, suggesting that L1-encoded proteins may act as tumor-associated antigens recognized by the immune system. In this study, we established an immunoassay to detect circulating autoantibodies against L1 proteins in human blood. Using this assay in >2,800 individuals with or without cancer, we observed significantly higher IgG titers against L1-encoded ORF1p and ORF2p in patients with lung, pancreatic, ovarian, esophageal, and liver cancers than in healthy individuals. Remarkably, elevated levels of anti-ORF1p-reactive IgG were observed in patients with cancer with disease stages 1 and 2, indicating that the immune response to L1 antigens can occur in the early phases of carcinogenesis. We concluded that the antibody response against L1 antigens could contribute to the diagnosis and determination of immunoreactivity of tumors among cancer types that frequently escape early detection. SIGNIFICANCE: The discovery of autoantibodies against antigens encoded by L1 retrotransposons in patients with five poorly curable cancer types has potential implications for the detection of an ongoing carcinogenic process and tumor immunoreactivity.


Neoplasms , Retroelements , Humans , Long Interspersed Nucleotide Elements/genetics , Neoplasms/genetics , Autoantibodies/genetics , Immunoglobulin G/genetics
2.
Proc Natl Acad Sci U S A ; 119(49): e2213146119, 2022 12 06.
Article En | MEDLINE | ID: mdl-36449545

Activation of endogenous retrotransposons frequently occurs in cancer cells and contributes to tumor genomic instability. To test whether inhibition of retrotranspositions has an anticancer effect, we used treatment with the nucleoside reverse transcriptase inhibitor (NRTI) stavudine (STV) in mouse cancer models, MMTV-HER2/Neu and Th-MYCN, that spontaneously develop breast cancer and neuroblastoma, respectively. In both cases, STV in drinking water did not affect tumor incidence nor demonstrate direct antitumor effects. However, STV dramatically extended progression-free survival in both models following an initial complete response to chemotherapy. To approach the mechanism underlying this phenomenon, we analyzed the effect of NRTI on the selection of treatment-resistant variants in tumor cells in culture. Cultivation of mouse breast carcinoma 4T1 in the presence of STV dramatically reduced the frequency of cells capable of surviving treatment with anticancer drugs. Global transcriptome analysis demonstrated that the acquisition of drug resistance by 4T1 cells was accompanied by an increase in the constitutive activity of interferon type I and NF-κB pathways and an elevated expression of LINE-1 elements, which are known to induce inflammatory responses via their products of reverse transcription. Treatment with NRTI reduced NF-κB activity and reverted drug resistance. Furthermore, the inducible expression of LINE-1 stimulated inflammatory response and increased the frequency of drug-resistant variants in a tumor cell population. These results indicate a mechanism by which retrotransposon desilencing can stimulate tumor cell survival during treatment and suggest reverse transcriptase inhibition as a potential therapeutic approach for targeting the development of drug-resistant cancers.


Retroelements , Reverse Transcriptase Inhibitors , Animals , Mice , Reverse Transcriptase Inhibitors/pharmacology , Retroelements/genetics , NF-kappa B , Drug Resistance, Neoplasm/genetics , Long Interspersed Nucleotide Elements
3.
Nat Commun ; 13(1): 6529, 2022 11 01.
Article En | MEDLINE | ID: mdl-36319638

Age is the leading risk factor for prevalent diseases and death. However, the relation between age-related physiological changes and lifespan is poorly understood. We combined analytical and machine learning tools to describe the aging process in large sets of longitudinal measurements. Assuming that aging results from a dynamic instability of the organism state, we designed a deep artificial neural network, including auto-encoder and auto-regression (AR) components. The AR model tied the dynamics of physiological state with the stochastic evolution of a single variable, the "dynamic frailty indicator" (dFI). In a subset of blood tests from the Mouse Phenome Database, dFI increased exponentially and predicted the remaining lifespan. The observation of the limiting dFI was consistent with the late-life mortality deceleration. dFI changed along with hallmarks of aging, including frailty index, molecular markers of inflammation, senescent cell accumulation, and responded to life-shortening (high-fat diet) and life-extending (rapamycin) treatments.


Frailty , Mice , Animals , Unsupervised Machine Learning , Aging/physiology , Longevity , Neural Networks, Computer
4.
Front Oncol ; 12: 863329, 2022.
Article En | MEDLINE | ID: mdl-35677155

Rearrangements of the Mixed Lineage Leukemia (MLL/KMT2A) gene are present in approximately 10% of acute leukemias and characteristically define disease with poor outcome. Driven by the unmet need to develop better therapies for KMT2A-rearranged leukemia, we previously discovered that the novel anti-cancer agent, curaxin CBL0137, induces decondensation of chromatin in cancer cells, delays leukemia progression and potentiates standard of care chemotherapies in preclinical KMT2A-rearranged leukemia models. Based on the promising potential of histone deacetylase (HDAC) inhibitors as targeted anti-cancer agents for KMT2A-rearranged leukemia and the fact that HDAC inhibitors also decondense chromatin via an alternate mechanism, we investigated whether CBL0137 could potentiate the efficacy of the HDAC inhibitor panobinostat in KMT2A-rearranged leukemia models. The combination of CBL0137 and panobinostat rapidly killed KMT2A-rearranged leukemia cells by apoptosis and significantly delayed leukemia progression and extended survival in an aggressive model of MLL-AF9 (KMT2A:MLLT3) driven murine acute myeloid leukemia. The drug combination also exerted a strong anti-leukemia response in a rapidly progressing xenograft model derived from an infant with KMT2A-rearranged acute lymphoblastic leukemia, significantly extending survival compared to either monotherapy. The therapeutic enhancement between CBL0137 and panobinostat in KMT2A-r leukemia cells does not appear to be mediated through cooperative effects of the drugs on KMT2A rearrangement-associated histone modifications. Our data has identified the CBL0137/panobinostat combination as a potential novel targeted therapeutic approach to improve outcome for KMT2A-rearranged leukemia.

5.
J Ethnopharmacol ; 283: 114666, 2022 Jan 30.
Article En | MEDLINE | ID: mdl-34592338

ETHNOPHARMACOLOGICAL RELEVANCE: Ervatamia coronaria, a popular garden plant in India and some other parts of the world is known traditionally for its anti-inflammatory and anti-cancer properties. The molecular bases of these functions remain poorly understood. AIM OF THE STUDY: Efficacies of the existing therapies for colorectal cancer (CRC) are limited by their life-threatening side effects and unaffordability. Therefore, identifying a safer, efficient, and affordable therapeutic is urgent. We studied the anti-CRC activity of an alkaloid-rich fraction of E. coronaria leaf extracts (AFE) and associated underlying mechanism. MATERIALS AND METHODS: Activity guided solvant fractionation was adopted to identify the activity in AFE. Different cell lines, and tumor grown in syngeneic mice were used to understand the anti-CRC effect. Methodologies such as LCMS, MTT, RT-qPCR, immunoblot, immunohistochemistry were employed to understand the molecular basis of its activity. RESULTS: We showed that AFE, which carries about six major compounds, is highly toxic to colorectal cancer (CRC) cells. AFE induced cell cycle arrest at G1 phase and p21 and p27 genes, while those of CDK2, CDK-4, cyclin-D, and cyclin-E genes were downregulated in HCT116 cells. It predominantly induced apoptosis in HCT116p53+/+ cells while the HCT116p53-/- cells under the same treatment condition died by autophagy. Notably, AFE induced upregulation of AMPK phosphorylation, and inhibition of both of the mTOR complexes as indicated by inhibition of phosphorylation of S6K1, 4EBP1, and AKT. Furthermore, AFE inhibited mTOR-driven conversion of cells from reversible cell cycle arrest to senescence (geroconversion) as well as ERK activity. AFE activity was independent of ROS produced, and did not primarily target the cellular DNA or cytoskeleton. AFE also efficiently regressed CT26-derived solid tumor in Balb/c mice acting alone or in synergy with 5FU through inducing autophagy as a major mechanism of action as indicated by upregulation of Beclin 1 and phospho-AMPK, and inhibition of phospho-S6K1 levels in the tumor tissue lysates. CONCLUSION: AFE induced CRC death through activation of both apoptotic and autophagy pathways without affecting the normal cells. This study provided a logical basis for consideration of AFE in future therapy regimen to overcome the limitations associated with existing anti-CRC chemotherapy.


Alkaloids/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Colorectal Neoplasms/drug therapy , Tabernaemontana/chemistry , AMP-Activated Protein Kinases/metabolism , Alkaloids/isolation & purification , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Autophagy/drug effects , Cell Cycle Checkpoints/drug effects , HCT116 Cells , HT29 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
6.
Nucleic Acids Res ; 49(19): 11350-11366, 2021 11 08.
Article En | MEDLINE | ID: mdl-34554261

Long interspersed nuclear element-1 (L1) is an autonomous non-LTR retrotransposon comprising ∼20% of the human genome. L1 self-propagation causes genomic instability and is strongly associated with aging, cancer and other diseases. The endonuclease domain of L1's ORFp2 protein (L1-EN) initiates de novo L1 integration by nicking the consensus sequence 5'-TTTTT/AA-3'. In contrast, related nucleases including structurally conserved apurinic/apyrimidinic endonuclease 1 (APE1) are non-sequence specific. To investigate mechanisms underlying sequence recognition and catalysis by L1-EN, we solved crystal structures of L1-EN complexed with DNA substrates. This showed that conformational properties of the preferred sequence drive L1-EN's sequence-specificity and catalysis. Unlike APE1, L1-EN does not bend the DNA helix, but rather causes 'compression' near the cleavage site. This provides multiple advantages for L1-EN's role in retrotransposition including facilitating use of the nicked poly-T DNA strand as a primer for reverse transcription. We also observed two alternative conformations of the scissile bond phosphate, which allowed us to model distinct conformations for a nucleophilic attack and a transition state that are likely applicable to the entire family of nucleases. This work adds to our mechanistic understanding of L1-EN and related nucleases and should facilitate development of L1-EN inhibitors as potential anticancer and antiaging therapeutics.


DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , DNA/chemistry , Deoxyribonuclease I/chemistry , Base Sequence , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , DNA/genetics , DNA/metabolism , DNA Cleavage , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Deoxyribonuclease I/genetics , Deoxyribonuclease I/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Genome, Human , Genomic Instability , Humans , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Thermodynamics
7.
Cell Death Discov ; 7(1): 266, 2021 Sep 28.
Article En | MEDLINE | ID: mdl-34584068

Acute radiation syndrome (ARS) is a major cause of lethality following radiation disasters. A TLR5 agonist, entolimod, is among the most powerful experimental radiation countermeasures and shows efficacy in rodents and non-human primates as a prophylactic (radioprotection) and treatment (radiomitigation) modality. While the prophylactic activity of entolimod has been connected to the suppression of radiation-induced apoptosis, the mechanism by which entolimod functions as a radiomitigator remains poorly understood. Uncovering this mechanism has significant and broad-reaching implications for the clinical development and improvement of TLR5 agonists for use as an effective radiation countermeasure in scenarios of mass casualty resulting from accidental exposure to ionizing radiation. Here, we demonstrate that in contrast to radioprotection, neutrophils are essential for the radiomitigative activity of entolimod in a mouse model of lethal ARS. Neutrophils express functional TLR5 and rapidly exit the bone marrow (BM), accumulate in solid tissues, and release MMP-9 following TLR5 stimulation which is accompanied by an increase in the number of active hematopoietic pluripotent precursors (HPPs) in the BM. Importantly, recombinant MMP-9 by itself has radiomitigative activity and, in the absence of neutrophils, accelerates the recovery of the hematopoietic system. Unveiling this novel TLR5-neutrophil-MMP-9 axis of radiomitigation opens new opportunities for the development of efficacious radiation countermeasures to treat ARS following accidental radiation disasters.

8.
Aging (Albany NY) ; 13(18): 21814-21837, 2021 09 28.
Article En | MEDLINE | ID: mdl-34587118

Canines represent a valuable model for mammalian aging studies as large animals with short lifespans, allowing longitudinal analyses within a reasonable time frame. Moreover, they develop a spectrum of aging-related diseases resembling that of humans, are exposed to similar environments, and have been reasonably well studied in terms of physiology and genetics. To overcome substantial variables that complicate studies of privately-owned household dogs, we have focused on a more uniform population composed of retired Alaskan sled dogs that shared similar lifestyles, including exposure to natural stresses, and are less prone to breed-specific biases than a pure breed population. To reduce variability even further, we have collected a population of 103 retired (8-11 years-old) sled dogs from multiple North American kennels in a specialized research facility named Vaika. Vaika dogs are maintained under standardized conditions with professional veterinary care and participate in a multidisciplinary program to assess the longitudinal dynamics of aging. The established Vaika infrastructure enables periodic gathering of quantitative data reflecting physical, physiological, immunological, neurological, and cognitive decline, as well as monitoring of aging-associated genetic and epigenetic alterations occurring in somatic cells. In addition, we assess the development of age-related diseases such as arthritis and cancer. In-depth data analysis, including artificial intelligence-based approaches, will build a comprehensive, integrated model of canine aging and potentially identify aging biomarkers that will allow use of this model for future testing of antiaging therapies.


Aging/physiology , Disease Models, Animal , Dogs , Aging/genetics , Aging/immunology , Aging/psychology , Animals , Artificial Intelligence , Cognition , Dogs/genetics , Dogs/growth & development , Dogs/immunology , Dogs/physiology , Genome , Humans , Immune System/immunology , Longevity
9.
Free Radic Biol Med ; 172: 136-151, 2021 08 20.
Article En | MEDLINE | ID: mdl-34097996

Prostate cancer (PCa) is a major cause of mortality and morbidity in men. Available therapies yield limited outcome. We explored anti-PCa activity in a polyphenol-rich fraction of Bergenia ligulata (PFBL), a plant used in Indian traditional and folk medicine for its anti-inflammatory and antineoplastic properties. PFBL constituted of about fifteen different compounds as per LCMS analysis induced apoptotic death in both androgen-dependent LNCaP and androgen-refractory PC3 and DU145 cells with little effect on NKE and WI38 cells. Further investigation revealed that PFBL mediates its function through upregulating ROS production by enhanced catalytic activity of Monoamine oxidase A (MAO-A). Notably, the differential inactivation of NRF2-antioxidant response pathway by PFBL resulted in death in PC3 versus NKE cells involving GSK-3ß activity facilitated by AKT inhibition. PFBL efficiently reduced the PC3-tumor xenograft in NOD-SCID mice alone and in synergy with Paclitaxel. Tumor tissues in PFBL-treated mice showed upregulation of similar mechanism of cell death as observed in isolated PC3 cells i.e., elevation of MAO-A catalytic activity, ROS production accompanied by activation of ß-TrCP-GSK-3ß axis of NRF2 degradation. Blood counts, liver, and splenocyte sensitivity analyses justified the PFBL safety in the healthy mice. To our knowledge this is the first report of an activity that crippled NRF2 activation both in vitro and in vivo in response to MAO-A activation. Results of this study suggest the development of a novel treatment protocol utilizing PFBL to improve therapeutic outcome for patients with aggressive PCa which claims hundreds of thousands of lives each year.


Antioxidants , Prostatic Neoplasms , Animals , Glycogen Synthase Kinase 3 beta , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Monoamine Oxidase , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Polyphenols/pharmacology , Prostatic Neoplasms/drug therapy
10.
Cell Death Dis ; 12(6): 545, 2021 05 26.
Article En | MEDLINE | ID: mdl-34039962

Transplantation of bone marrow (BM) is made possible by the differential sensitivity of its stromal and hematopoietic components to preconditioning by radiation and/or chemotherapeutic drugs. These genotoxic treatments eliminate host hematopoietic precursors by inducing p53-mediated apoptosis but keep the stromal niche sufficiently intact for the engraftment of donor hematopoietic cells. We found that p53-null mice cannot be rescued by BM transplantation (BMT) from even the lowest lethal dose of total body irradiation (TBI). We compared structural changes in BM stroma of mice differing in their p53 status to understand why donor BM failed to engraft in the irradiated p53-null mice. Irradiation did not affect the general structural integrity of BM stroma and induced massive expression of alpha-smooth muscle actin in mesenchymal cells followed by increased adiposity in p53 wild-type mice. In contrast, none of these events were found in p53-null mice, whose BM stroma underwent global structural damage following TBI. Similar differences in response to radiation were observed in in vitro-grown bone-adherent mesenchymal cells (BAMC): p53-null cells underwent mitotic catastrophe while p53 wild-type cells stayed arrested but viable. Supplementation with intact BAMC of either genotype enabled donor BM engraftment and significantly extended longevity of irradiated p53-null mice. Thus, successful preconditioning depends on the p53-mediated protection of cells critical for the functionality of BM stroma. Overall, this study reveals a dual positive role of p53 in BMT: it drives apoptotic death of hematopoietic cells and protects BM stromal cells essential for its functionality.


Bone Marrow/physiopathology , Hematopoietic Stem Cells/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Cell Proliferation , Mice
11.
Nat Commun ; 12(1): 2765, 2021 05 25.
Article En | MEDLINE | ID: mdl-34035236

We investigated the dynamic properties of the organism state fluctuations along individual aging trajectories in a large longitudinal database of CBC measurements from a consumer diagnostics laboratory. To simplify the analysis, we used a log-linear mortality estimate from the CBC variables as a single quantitative measure of the aging process, henceforth referred to as dynamic organism state indicator (DOSI). We observed, that the age-dependent population DOSI distribution broadening could be explained by a progressive loss of physiological resilience measured by the DOSI auto-correlation time. Extrapolation of this trend suggested that DOSI recovery time and variance would simultaneously diverge at a critical point of 120 - 150 years of age corresponding to a complete loss of resilience. The observation was immediately confirmed by the independent analysis of correlation properties of intraday physical activity levels fluctuations collected by wearable devices. We conclude that the criticality resulting in the end of life is an intrinsic biological property of an organism that is independent of stress factors and signifies a fundamental or absolute limit of human lifespan.


Adaptation, Physiological/physiology , Aging/physiology , Biomarkers/blood , Longevity/physiology , Resilience, Psychological , Adult , Aged , Aged, 80 and over , Aging/psychology , Blood Cell Count/methods , Female , Health Status , Humans , Longitudinal Studies , Male , Middle Aged , Young Adult
12.
Methods Mol Biol ; 2318: 337-346, 2021.
Article En | MEDLINE | ID: mdl-34019301

Oncoproteins encoded by dominant oncogenes have long been considered as targets for chemotherapeutic intervention. However, oncogenic transcription factors have often been dismissed as "undruggable." Members of the Myc family of transcription factors have been identified as promising targets for cancer chemotherapy in multiple publications reporting the requirement of Myc proteins for maintenance of almost every type of tumor. Here, we describe cell-based approaches to identify c-Myc small molecule inhibitors by screening complex libraries of diverse small molecules based on Myc functionality and specificity.


Drug Screening Assays, Antitumor/methods , Genes, myc/drug effects , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Cell Line, Tumor , Genes, myc/genetics , Genes, myc/physiology , Humans , Oncogene Proteins/drug effects , Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Small Molecule Libraries/pharmacology , Transcription Factors/drug effects , Transcription Factors/metabolism
13.
Clin Cancer Res ; 27(15): 4338-4352, 2021 08 01.
Article En | MEDLINE | ID: mdl-33994371

PURPOSE: We investigated whether targeting chromatin stability through a combination of the curaxin CBL0137 with the histone deacetylase (HDAC) inhibitor, panobinostat, constitutes an effective multimodal treatment for high-risk neuroblastoma. EXPERIMENTAL DESIGN: The effects of the drug combination on cancer growth were examined in vitro and in animal models of MYCN-amplified neuroblastoma. The molecular mechanisms of action were analyzed by multiple techniques including whole transcriptome profiling, immune deconvolution analysis, immunofluorescence, flow cytometry, pulsed-field gel electrophoresis, assays to assess cell growth and apoptosis, and a range of cell-based reporter systems to examine histone eviction, heterochromatin transcription, and chromatin compaction. RESULTS: The combination of CBL0137 and panobinostat enhanced nucleosome destabilization, induced an IFN response, inhibited DNA damage repair, and synergistically suppressed cancer cell growth. Similar synergistic effects were observed when combining CBL0137 with other HDAC inhibitors. The CBL0137/panobinostat combination significantly delayed cancer progression in xenograft models of poor outcome high-risk neuroblastoma. Complete tumor regression was achieved in the transgenic Th-MYCN neuroblastoma model which was accompanied by induction of a type I IFN and immune response. Tumor transplantation experiments further confirmed that the presence of a competent adaptive immune system component allowed the exploitation of the full potential of the drug combination. CONCLUSIONS: The combination of CBL0137 and panobinostat is effective and well-tolerated in preclinical models of aggressive high-risk neuroblastoma, warranting further preclinical and clinical investigation in other pediatric cancers. On the basis of its potential to boost IFN and immune responses in cancer models, the drug combination holds promising potential for addition to immunotherapies.


Carbazoles/administration & dosage , Carbazoles/pharmacology , Chromatin/drug effects , Histone Deacetylase Inhibitors/administration & dosage , Histone Deacetylase Inhibitors/pharmacology , Neuroblastoma/drug therapy , Panobinostat/administration & dosage , Panobinostat/pharmacology , Animals , Drug Combinations , Drug Evaluation, Preclinical , Mice , Tumor Cells, Cultured
14.
Cell Rep ; 35(2): 108994, 2021 04 13.
Article En | MEDLINE | ID: mdl-33852836

Diffuse intrinsic pontine glioma (DIPG) is an aggressive and incurable childhood brain tumor for which new treatments are needed. CBL0137 is an anti-cancer compound developed from quinacrine that targets facilitates chromatin transcription (FACT), a chromatin remodeling complex involved in transcription, replication, and DNA repair. We show that CBL0137 displays profound cytotoxic activity against a panel of patient-derived DIPG cultures by restoring tumor suppressor TP53 and Rb activity. Moreover, in an orthotopic model of DIPG, treatment with CBL0137 significantly extends animal survival. The FACT subunit SPT16 is found to directly interact with H3.3K27M, and treatment with CBL0137 restores both histone H3 acetylation and trimethylation. Combined treatment of CBL0137 with the histone deacetylase inhibitor panobinostat leads to inhibition of the Rb/E2F1 pathway and induction of apoptosis. The combination of CBL0137 and panobinostat significantly prolongs the survival of mice bearing DIPG orthografts, suggesting a potential treatment strategy for DIPG.


Antineoplastic Agents/pharmacology , Brain Stem Neoplasms/drug therapy , DNA-Binding Proteins/genetics , Diffuse Intrinsic Pontine Glioma/drug therapy , Epigenesis, Genetic , High Mobility Group Proteins/genetics , Histones/genetics , Neuroglia/drug effects , Transcriptional Elongation Factors/genetics , Acetylation , Animals , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/mortality , Brain Stem Neoplasms/pathology , Carbazoles/pharmacology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Child , Chromatin/chemistry , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Diffuse Intrinsic Pontine Glioma/genetics , Diffuse Intrinsic Pontine Glioma/mortality , Diffuse Intrinsic Pontine Glioma/pathology , Drug Synergism , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , Epigenome , High Mobility Group Proteins/metabolism , Histones/antagonists & inhibitors , Histones/metabolism , Humans , Methylation , Mice , Neuroglia/metabolism , Neuroglia/pathology , Panobinostat/pharmacology , Primary Cell Culture , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Signal Transduction , Survival Analysis , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Elongation Factors/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
15.
Commun Biol ; 4(1): 466, 2021 04 12.
Article En | MEDLINE | ID: mdl-33846531

The Toll-like receptor 5 (TLR5) agonist entolimod, a derivative of Salmonella flagellin, has therapeutic potential for several indications including radioprotection and cancer immunotherapy. However, in Phase 1 human studies, entolimod induced a rapid neutralizing immune response, presumably due to immune memory from prior exposure to flagellated enterobacteria. To enable multi-dose applications, we used structure-guided reengineering to develop a next-generation, substantially deimmunized entolimod variant, GP532. GP532 induces TLR5-dependent NF-κB activation like entolimod but is smaller and has mutations eliminating an inflammasome-activating domain and key B- and T-cell epitopes. GP532 is resistant to human entolimod-neutralizing antibodies and shows reduced de novo immunogenicity. GP532 also has improved bioavailability, a stronger effect on key cytokine biomarkers, and a longer-lasting effect on NF-κB. Like entolimod, GP532 demonstrated potent prophylactic and therapeutic efficacy in mouse models of radiation-induced death and tissue damage. These results establish GP532 as an optimized TLR5 agonist suitable for multi-dose therapies and for patients with high titers of preexisting flagellin-neutralizing antibodies.


Peptides/pharmacology , Signal Transduction , Toll-Like Receptor 5/agonists , Cell Line, Tumor , HEK293 Cells , Humans
16.
Cancer Immunol Immunother ; 70(7): 2073-2086, 2021 Jul.
Article En | MEDLINE | ID: mdl-33439292

Curaxins are small molecules that bind genomic DNA and interfere with DNA-histone interactions leading to the loss of histones and decondensation of chromatin. We named this phenomenon 'chromatin damage'. Curaxins demonstrated anti-cancer activity in multiple pre-clinical tumor models. Here, we present data which reveals, for the first time, a role for the immune system in the anti-cancer effects of curaxins. Using the lead curaxin, CBL0137, we observed elevated expression of several group of genes in CBL0137-treated tumor cells including interferon sensitive genes, MHC molecules, some embryo-specific antigens suggesting that CBL0137 increases tumor cell immunogenicity and improves recognition of tumor cells by the immune system. In support of this, we found that the anti-tumor activity of CBL0137 was reduced in immune deficient SCID mice when compared to immune competent mice. Anti-tumor activity of CBL0137 was abrogated in CD8+ T cell depleted mice but only partially lost when natural killer or CD4+ T cells were depleted. Further support for a key role for the immune system in the anti-tumor activity of CBL0137 is evidenced by an increased antigen-specific effector CD8+ T cell and NK cell response, and an increased ratio of effector T cells to Tregs in the tumor and spleen. CBL0137 also elevated the number of CXCR3-expressing CTLs in the tumor and the level of interferon-γ-inducible protein 10 (IP-10) in serum, suggesting IP-10/CXCR3 controls CBL0137-elicited recruitment of effector CTLs to tumors. Our collective data underscores a previously unrecognized role for both innate and adaptive immunity in the anti-tumor activity of curaxins.


Carbazoles/pharmacology , Chromatin/drug effects , Colonic Neoplasms/drug therapy , Immunity/immunology , Animals , Apoptosis , Cell Proliferation , Chemokines/metabolism , Chromatin/genetics , Chromatin/metabolism , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Cytokines/metabolism , Female , Humans , Mice , Mice, Inbred BALB C , Mice, SCID , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
17.
Aging Cell ; 19(10): e13219, 2020 10.
Article En | MEDLINE | ID: mdl-32856419

Adipose tissue is recognized as a major source of systemic inflammation with age, driving age-related tissue dysfunction and pathogenesis. Macrophages (Mφ) are central to these changes yet adipose tissue Mφ (ATMs) from aged mice remain poorly characterized. To identify biomarkers underlying changes in aged adipose tissue, we performed an unbiased RNA-seq analysis of ATMs from young (8-week-old) and healthy aged (80-week-old) mice. One of the genes identified, V-set immunoglobulin-domain-containing 4 (VSIG4/CRIg), encodes a Mφ-associated complement receptor and B7 family-related immune checkpoint protein. Here, we demonstrate that Vsig4 expression is highly upregulated with age in perigonadal white adipose tissue (gWAT) in two mouse strains (inbred C57BL/6J and outbred NIH Swiss) independent of gender. The accumulation of VSIG4 was mainly attributed to a fourfold increase in the proportion of VSIG4+ ATMs (13%-52%). In a longitudinal study, VSIG4 expression in gWAT showed a strong correlation with age within a cohort of male and female mice and correlated strongly with physiological frailty index (PFI, a multi-parameter assessment of health) in male mice. Our results indicate that VSIG4 is a novel biomarker of aged murine ATMs. VSIG4 expression was also found to be elevated in other aging tissues (e.g., thymus) and was strongly induced in tumor-adjacent stroma in cases of spontaneous and xenograft lung cancer models. VSIG4 expression was recently associated with cancer and several inflammatory diseases with diagnostic and prognostic potential in both mice and humans. Further investigation is required to determine whether VSIG4-positive Mφ contribute to immunosenescence and/or systemic age-related deficits.


Adipose Tissue, White/metabolism , Receptors, Complement/metabolism , Aging/metabolism , Animals , Biomarkers/metabolism , Female , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL
18.
Oncotarget ; 11(14): 1273-1288, 2020 Apr 07.
Article En | MEDLINE | ID: mdl-32292576

Toll-like receptor 5 (TLR5) controls endogenous immune responses to pathogens and is a promising target for pharmacological stimulation of anti-tumor immunity. Mobilan is an innovative gene therapy agent consisting of a non-replicating bicistronic adenovirus directing constitutive expression of human Toll-like receptor 5 (TLR5) and the secreted flagellin-based TLR5 agonist, 502s. In mice, Mobilan injection into prostate tumors resulted in autocrine TLR5 signaling, immune system activation, and suppression of tumor growth and metastasis. Here we report a first-in-human placebo-controlled clinical study of Mobilan aimed at evaluating safety, tolerability, pharmacokinetics and pharmacodynamics of a single intra-prostate injection of Mobilan in early stage prostate cancer patients. Mobilan was safe and well-tolerated at all tested doses; thus, the maximum tolerated dose was not identified. Injection of Mobilan induced signs of self-resolving inflammation not present in placebo-injected patients, including transient elevation of PSA and cytokine (G-CSF, IL-6) levels, and increased lymphoid infiltration in prostate tissue. The highest dose of Mobilan (1011 viral particles) produced the best combination of safety and pharmacodynamic effects. Therefore, Mobilan is well-tolerated and induces the expected pharmacodynamic response in humans. These results support further clinical development of Mobilan as a novel immunotherapy for prostate cancer.

19.
Oncotarget ; 11(15): 1373-1387, 2020 Apr 14.
Article En | MEDLINE | ID: mdl-32341756

The mechanistic target of rapamycin (mTOR) is a PI3K-related kinase that regulates cell growth, proliferation and survival in response to the availability of energy sources and growth factors. Cancer development and progression is often associated with constitutive activation of the mTOR pathway, thus justifying mTOR inhibition as a promising approach to cancer treatment and prevention. However, development of previous rapamycin analogues has been complicated by their induction of adverse side effects and variable efficacy. Since mTOR pathway regulation involves multiple feedback mechanisms that may be differentially activated depending on the degree of mTOR inhibition, we investigated whether rapamycin dosing could be adjusted to achieve chemopreventive efficacy without side effects. Thus, we tested the efficacy of two doses of a novel, highly bioavailable nanoformulation of rapamycin, Rapatar, in a mouse prostate cancer model (male mice with prostate epithelium-specific Pten-knockout). We found that the highest efficacy was achieved by the lowest dose of Rapatar used in the study. While both doses tested were equally effective in suppressing proliferation of prostate epithelial cells, higher dose resulted in activation of feedback circuits that reduced the drug's tumor preventive efficacy. These results demonstrate that low doses of highly bioavailable mTOR inhibitor, Rapatar, may provide safe and effective cancer prevention.

20.
PLoS One ; 15(2): e0227940, 2020.
Article En | MEDLINE | ID: mdl-32027657

Tumor necrosis factor alpha (TNF) is capable of inducing regression of solid tumors. However, TNF released in response to Toll-like receptor 4 (TLR4) activation by bacterial lipopolysaccharide (LPS) is the key mediator of cytokine storm and septic shock that can cause severe tissue damage limiting anticancer applications of this cytokine. In our previous studies, we demonstrated that activation of another Toll-like receptor, TLR5, could protect from tissue damage caused by a variety of stresses including radiation, chemotherapy, Fas-activating antibody and ischemia-reperfusion. In this study, we tested whether entolimod could counteract TNF-induced toxicity in mouse models. We found that entolimod pretreatment effectively protects livers and lungs from LPS- and TNF-induced toxicity and prevents mortality caused by combining either of these agents with the sensitizer, D-galactosamine. While LPS and TNF induced significant activation of apoptotic caspase 3/7, lipid tissue peroxidation and serum ALT accumulation in mice without entolimod treatment, these indicators of toxicity were reduced by entolimod pretreatment to the levels of untreated control mice. Entolimod was effective when injected 0.5-48 hours prior to, but not when injected simultaneously or after LPS or TNF. Using chimeric mice with hematopoiesis differing in its TLR5 status from the rest of tissues, we showed that this protective activity was dependent on TLR5 expression by non-hematopoietic cells. Gene expression analysis identified multiple genes upregulated by entolimod in the liver and cultured hepatocytes as possible mediators of its protective activity. Entolimod did not interfere with the antitumor activity of TNF in mouse hepatocellular and colorectal tumor models. These results support further development of TLR5 agonists to increase tissue resistance to cytotoxic cytokines, reduce the risk of septic shock and enable safe systemic application of TNF as an anticancer therapy.


Antineoplastic Agents/pharmacology , Peptides/pharmacology , Toll-Like Receptor 5/agonists , Tumor Necrosis Factor-alpha/toxicity , Animals , Cell Line, Tumor , Cells, Cultured , Galactosamine , Hematopoiesis/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Lipopolysaccharides/toxicity , Liver/drug effects , Liver/pathology , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Biological , NF-kappa B/metabolism , Protective Agents/pharmacology , Survival Analysis , Toll-Like Receptor 5/metabolism , Tumor Necrosis Factor-alpha/blood , Up-Regulation/drug effects , Up-Regulation/genetics
...