Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 13(1): 16019, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749157

RESUMEN

To explore the connection between chloroplast and coffee resistance factors, designated as SH1 to SH9, whole genomic DNA of 42 coffee genotypes was sequenced, and entire chloroplast genomes were de novo assembled. The chloroplast phylogenetic haplotype network clustered individuals per species instead of SH factors. However, for the first time, it allowed the molecular validation of Coffea arabica as the maternal parent of the spontaneous hybrid "Híbrido de Timor". Individual reads were also aligned on the C. arabica reference genome to relate SH factors with chloroplast metabolism, and an in-silico analysis of selected nuclear-encoded chloroplast proteins (132 proteins) was performed. The nuclear-encoded thioredoxin-like membrane protein HCF164 enabled the discrimination of individuals with and without the SH9 factor, due to specific DNA variants linked to chromosome 7c (from C. canephora-derived sub-genome). The absence of both the thioredoxin domain and redox-active disulphide center in the HCF164 protein, observed in SH9 individuals, raises the possibility of potential implications on redox regulation. For the first time, the identification of specific DNA variants of chloroplast proteins allows discriminating individuals according to the SH profile. This study introduces an unexplored strategy for identifying protein/genes associated with SH factors and candidate targets of H. vastatrix effectors, thereby creating new perspectives for coffee breeding programs.


Asunto(s)
Coffea , Humanos , Coffea/genética , Café , Filogenia , Factores R , Fitomejoramiento , Tiorredoxinas , Proteínas Nucleares , Proteínas de la Membrana , Proteínas de Cloroplastos , Cloroplastos/genética , Factor H de Complemento
3.
BMC Plant Biol ; 19(1): 503, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729948

RESUMEN

BACKGROUND: Dicer-like proteins (DCLs) are essential players in RNA-silencing mechanisms, acting in gene regulation via miRNAs and in antiviral protection in plants and have also been associated to other biotic and abiotic stresses. To the best of our knowledge, despite being identified in some crops, cotton DCLs haven't been characterized until now. In this work, we characterized the DCLs of three cotton species and analyzed their expression profiles during biotic stress. RESULTS: As main results, 11 DCLs in the allotetraploid cotton Gossypium hirsutum, 7 and 6 in the diploid G. arboreum and G. raimondii, were identified, respectively. Among some DCLs duplications observed in these genomes, the presence of an extra DCL3 in the three cotton species were detected, which haven't been found in others eudicots. All the DCL types identified by in silico analysis in the allotetraploid cotton genome were able to generate transcripts, as observed by gene expression analysis in distinct tissues. Based on the importance of DCLs for plant defense against virus, responses of cotton DCLs to virus infection and/or herbivore attack using two commercial cotton cultivars (cv.), one susceptible (FM966) and another resistant (DO) to polerovirus CLRDV infection, were analyzed. Both cvs. Responded differently to virus infection. At the inoculation site, the resistant cv. showed strong induction of DCL2a and b, while the susceptible cv. showed a down-regulation of these genes, wherever DCL4 expression was highly induced. A time course of DCL expression in aerial parts far from inoculation site along infection showed that DCL2b and DCL4 were repressed 24 h after infection in the susceptible cotton. As CLRDV is aphid-transmitted, herbivore attack was also checked. Opposite expression pattern of DCL2a and b and DCL4 was observed for R and S cottons, showing that aphid feeding alone may induce DCL modulation. CONCLUSIONS: Almost all the DCLs of the allotetraploide G. hirsutum cotton were found in their relative diploids. Duplications of DCL2 and DCL3 were found in the three species. All four classes of DCL responded to aphid attack and virus infection in G. hirsutum. DCLs initial responses against the virus itself and/or herbivore attack may be contributing towards virus resistance.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Gossypium/genética , Ribonucleasa III/genética , Estrés Fisiológico , Diploidia , Perfilación de la Expresión Génica , Gossypium/fisiología , MicroARNs/genética , Proteínas de Plantas/genética , Poliploidía , ARN de Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA