Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34360894

RESUMEN

Disruption of retinal pigment epithelial (RPE) barrier integrity is involved in the pathology of several blinding retinal diseases including age-related macular degeneration (AMD) and diabetic retinopathy (DR), but the underlying causes and pathophysiology are not completely well-defined. Mitochondria dysfunction has often been considered as a potential candidate implicated in such a process. In this study, we aimed to dissect the role of different mitochondrial components; specifically, those of oxidative phosphorylation (OxPhos), in maintaining the barrier functionality of RPE. Electric cell-substrate impedance sensing (ECIS) technology was used to collect multi-frequency electrical impedance data to assess in real-time the barrier formation of the RPE cells. For this purpose, the human retinal pigment epithelial cell line-ARPE-19-was used and treated with varying concentrations of specific mitochondrial inhibitors that target different steps in OxPhos: Rotenone for complex I (the largest protein complex in the electron transport chain (ETC)); oligomycin for ATP synthase; and carbonyl cyanide-p-trifluoromethoxyphenyl hydrazone (FCCP) for uncoupling ATP synthesis from the accompanying ETC. Furthermore, data were modeled using the ECIS-Zθ software to investigate in depth the effects of these inhibitors on three separate barrier parameters: cell-cell interactions (Rb), cell-matrix interactions (α), and the cell membrane capacitance (Cm). The viability of ARPE-19 cells was determined by lactate dehydrogenase (LDH) Cytotoxicity Assay. The ECIS program's modeling demonstrated that FCCP and thus OxPhos uncoupling disrupt the barrier function in the ARPE-19 cells across all three components of the total resistance (Rb, α, and Cm) in a dose-dependent manner. On the other hand, oligomycin and thus ATP synthase inhibition mostly affects the ARPE-19 cells' attachment to their substrate evident by a significant decrease in α resistance in a dose-dependent manner, both at the end and throughout the duration of the experiment. On the contrary, rotenone and complex I inhibition mostly affect the ARPE-19 paracellular resistance Rb in a dose-dependent manner compared to basolateral resistance α or Cm. Our results clearly demonstrate differential roles for different mitochondrial components in maintaining RPE cell functionality in which uncoupling of OxPhos is a major contributing factor to the disruption barrier function. Such differences can be used in investigating gene expression as well as for screening of selective agents that improve the OxPhos coupling efficiency to be used in the therapeutic approach for treating RPE-related retinal diseases.


Asunto(s)
Barrera Hematorretinal/metabolismo , Retinopatía Diabética/metabolismo , Células Epiteliales/metabolismo , Degeneración Macular/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Barrera Hematorretinal/efectos de los fármacos , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacocinética , Línea Celular , Supervivencia Celular/efectos de los fármacos , Impedancia Eléctrica , Transporte de Electrón/efectos de los fármacos , Inhibidores Enzimáticos/farmacocinética , Humanos , Mitocondrias/efectos de los fármacos , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , Oligomicinas/farmacocinética , Epitelio Pigmentado de la Retina/efectos de los fármacos , Rotenona/farmacocinética
2.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925448

RESUMEN

Disruption of retinal pigment epithelial (RPE barrier integrity is a hallmark feature of various retinal blinding diseases, including diabetic macular edema and age-related macular degeneration, but the underlying causes and pathophysiology are not completely well-defined. One of the most conserved phenomena in biology is the progressive decline in mitochondrial function with aging leading to cytopathic hypoxia, where cells are unable to use oxygen for energy production. Therefore, this study aimed to thoroughly investigate the role of cytopathic hypoxia in compromising the barrier functionality of RPE cells. We used Electric Cell-Substrate Impedance Sensing (ECIS) system to monitor precisely in real time the barrier integrity of RPE cell line (ARPE-19) after treatment with various concentrations of cytopathic hypoxia-inducing agent, Cobalt(II) chloride (CoCl2). We further investigated how the resistance across ARPE-19 cells changes across three separate parameters: Rb (the electrical resistance between ARPE-19 cells), α (the resistance between the ARPE-19 and its substrate), and Cm (the capacitance of the ARPE-19 cell membrane). The viability of the ARPE-19 cells and mitochondrial bioenergetics were quantified with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and seahorse technology, respectively. ECIS measurement showed that CoCl2 reduced the total impedance of ARPE-19 cells in a dose dependent manner across all tested frequencies. Specifically, the ECIS program's modelling demonstrated that CoCl2 affected Rb as it begins to drastically decrease earlier than α or Cm, although ARPE-19 cells' viability was not compromised. Using seahorse technology, all three concentrations of CoCl2 significantly impaired basal, maximal, and ATP-linked respirations of ARPE-19 cells but did not affect proton leak and non-mitochondrial bioenergetic. Concordantly, the expression of a major paracellular tight junction protein (ZO-1) was reduced significantly with CoCl2-treatment in a dose-dependent manner. Our data demonstrate that the ARPE-19 cells have distinct dielectric properties in response to cytopathic hypoxia in which disruption of barrier integrity between ARPE-19 cells precedes any changes in cells' viability, cell-substrate contacts, and cell membrane permeability. Such differences can be used in screening of selective agents that improve the assembly of RPE tight junction without compromising other RPE barrier parameters.


Asunto(s)
Técnicas Biosensibles/métodos , Hipoxia de la Célula , Cobalto/farmacología , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/fisiología , Técnicas Biosensibles/instrumentación , Adhesión Celular , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Cobalto/administración & dosificación , Relación Dosis-Respuesta a Droga , Impedancia Eléctrica , Electrodos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Proteína de la Zonula Occludens-1/metabolismo
3.
Sci Rep ; 9(1): 1534, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30733491

RESUMEN

Opioid abuse is now the most common cause of accidental death in the US. Although opioids and most other drugs of abuse acutely increase signaling mediated by midbrain dopamine (DA)-synthesizing neurons, little is known about long-lasting changes in DA cells that may contribute to continued opioid abuse, craving, and relapse. A better understanding of the molecular and cellular bases of opioid abuse could lead to advancements in therapeutics. This study comprises, to our knowledge, the first unbiased examination of genome-wide changes in midbrain gene expression associated with human opioid abuse. Our analyses identified differentially expressed genes and distinct gene networks associated with opioid abuse, specific genes with predictive capability for subject assignment to the opioid abuse cohort, and genes most similarly affected in chronic opioid and cocaine abusers. We also identified differentially expressed long noncoding RNAs capable of regulating known drug-responsive protein-coding genes. Opioid-regulated genes identified in this study warrant further investigation as potential biomarkers and/or therapeutic targets for human substance abuse.


Asunto(s)
Biomarcadores/metabolismo , Cocaína/farmacología , Redes Reguladoras de Genes , Mesencéfalo/metabolismo , Trastornos Relacionados con Opioides/patología , ARN Largo no Codificante/metabolismo , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Área Bajo la Curva , Estudios de Casos y Controles , Humanos , Concentración de Iones de Hidrógeno , Mesencéfalo/química , Mesencéfalo/efectos de los fármacos , Persona de Mediana Edad , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/metabolismo , Trastornos Relacionados con Opioides/genética , Trastornos Relacionados con Opioides/metabolismo , Curva ROC
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA