Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(3): e0287733, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427670

RESUMEN

Immune checkpoint blockade (ICB) targeting the programmed cell death protein 1 (PD-1) and its ligand 1 (PD-L1) fails to provide clinical benefit for most cancer patients due to primary or acquired resistance. Drivers of ICB resistance include tumor antigen processing/presentation machinery (APM) and IFNγ signaling mutations. Thus, there is an unmet clinical need to develop alternative therapies for these patients. To this end, we have developed a CRISPR/Cas9 approach to generate murine tumor models refractory to PD-1/-L1 inhibition due to APM/IFNγ signaling mutations. Guide RNAs were employed to delete B2m, Jak1, or Psmb9 genes in ICB-responsive EMT6 murine tumor cells. B2m was deleted in ICB-responsive MC38 murine colon cancer cells. We report a detailed development and validation workflow including whole exome and Sanger sequencing, western blotting, and flow cytometry to assess target gene deletion. Tumor response to ICB and immune effects of gene deletion were assessed in syngeneic mice. This workflow can help accelerate the discovery and development of alternative therapies and a deeper understanding of the immune consequences of tumor mutations, with potential clinical implications.


Asunto(s)
Presentación de Antígeno , Receptor de Muerte Celular Programada 1 , Animales , Ratones , Antígeno B7-H1 , Línea Celular Tumoral , Sistemas CRISPR-Cas/genética , Receptor de Muerte Celular Programada 1/genética , ARN Guía de Sistemas CRISPR-Cas , Transducción de Señal
2.
Sci Adv ; 10(7): eadj2445, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38354234

RESUMEN

The majority of clinically approved drugs target proteins that are secreted or cell surface bound. However, further advances in this area have been hindered by the challenging nature of receptor deorphanization, as there are still many secreted and cell-bound proteins with unknown binding partners. Here, we developed an advanced screening platform that combines CRISPR-CAS9 guide-mediated gene activation (CRISPRa) and high-avidity bead-based selection. The CRISPRa platform incorporates serial enrichment and flow cytometry-based monitoring, resulting in substantially improved screening sensitivity for well-known yet weak interactions of the checkpoint inhibitor family. Our approach has successfully revealed that siglec-4 exerts regulatory control over T cell activation through a low affinity trans-interaction with the costimulatory receptor 4-1BB. Our highly efficient screening platform holds great promise for identifying extracellular interactions of uncharacterized receptor-ligand partners, which is essential to develop next-generation therapeutics, including additional immune checkpoint inhibitors.


Asunto(s)
Sistemas CRISPR-Cas , Proteínas de la Membrana , Ligandos , Proteínas de la Membrana/genética , Activación Transcripcional
3.
Cell Rep ; 42(12): 113434, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37980563

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) exhibits distinct molecular subtypes: classical/progenitor and basal-like/squamous. Our study aimed to identify genes contributing to the development of the basal-like/squamous subtype, known for its aggressiveness. Transcriptome analyses revealed consistent upregulation of SERPINB3 in basal-like/squamous PDAC, correlating with reduced patient survival. SERPINB3 transgene expression in PDAC cells enhanced in vitro invasion and promoted lung metastasis in a mouse PDAC xenograft model. Metabolome analyses unveiled a metabolic signature linked to both SERPINB3 and the basal-like/squamous subtype, characterized by heightened carnitine/acylcarnitine and amino acid metabolism, associated with poor prognosis in patients with PDAC and elevated cellular invasiveness. Further analysis uncovered that SERPINB3 inhibited the cysteine protease calpain, a key enzyme in the MYC degradation pathway, and drove basal-like/squamous subtype and associated metabolic reprogramming through MYC activation. Our findings indicate that the SERPINB3-MYC axis induces the basal-like/squamous subtype, proposing SERPINB3 as a potential diagnostic and therapeutic target for this variant.


Asunto(s)
Carcinoma Ductal Pancreático , Carcinoma de Células Escamosas , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/patología , Carcinoma de Células Escamosas/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...