Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
BMC Genomics ; 15: 1056, 2014 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-25471115

RESUMEN

BACKGROUND: Understanding gene expression and metabolic re-programming that occur in response to limiting nitrogen (N) conditions in crop plants is crucial for the ongoing progress towards the development of varieties with improved nitrogen use efficiency (NUE). To unravel new details on the molecular and metabolic responses to N availability in a major food crop, we conducted analyses on a weighted gene co-expression network and metabolic profile data obtained from leaves and roots of rice plants adapted to sufficient and limiting N as well as after shifting them to limiting (reduction) and sufficient (induction) N conditions. RESULTS: A gene co-expression network representing clusters of rice genes with similar expression patterns across four nitrogen conditions and two tissue types was generated. The resulting 18 clusters were analyzed for enrichment of significant gene ontology (GO) terms. Four clusters exhibited significant correlation with limiting and reducing nitrate treatments. Among the identified enriched GO terms, those related to nucleoside/nucleotide, purine and ATP binding, defense response, sugar/carbohydrate binding, protein kinase activities, cell-death and cell wall enzymatic activity are enriched. Although a subset of functional categories are more broadly associated with the response of rice organs to limiting N and N reduction, our analyses suggest that N reduction elicits a response distinguishable from that to adaptation to limiting N, particularly in leaves. This observation is further supported by metabolic profiling which shows that several compounds in leaves change proportionally to the nitrate level (i.e. higher in sufficient N vs. limiting N) and respond with even higher levels when the nitrate level is reduced. Notably, these compounds are directly involved in N assimilation, transport, and storage (glutamine, asparagine, glutamate and allantoin) and extend to most amino acids. Based on these data, we hypothesize that plants respond by rapidly mobilizing stored vacuolar nitrate when N deficit is perceived, and that the response likely involves phosphorylation signal cascades and transcriptional regulation. CONCLUSIONS: The co-expression network analysis and metabolic profiling performed in rice pinpoint the relevance of signal transduction components and regulation of N mobilization in response to limiting N conditions and deepen our understanding of N responses and N use in crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Redes y Vías Metabólicas , Nitratos/metabolismo , Oryza/genética , Oryza/metabolismo , Análisis por Conglomerados , Biología Computacional , Epigénesis Genética , Perfilación de la Expresión Génica , Metaboloma , Metabolómica , Anotación de Secuencia Molecular , Familia de Multigenes , Especificidad de Órganos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
PLoS One ; 9(5): e96158, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24788752

RESUMEN

Plants grown under inadequate mineralized nitrogen (N) levels undergo N and carbon (C) metabolic re-programming which leads to significant changes in both soluble and insoluble carbohydrate profiles. However, relatively little information is available on the genetic factors controlling carbohydrate partitioning during adaptation to N-limitation conditions in plants. A gene encoding a uridine-diphospho-(UDP)-glucose 4-epimerase (OsUGE-1) from rice (Oryza sativa) was found to be N-responsive. We developed transgenic rice plants to constitutively over-express the OsUGE-1 gene (OsUGE1-OX1-2). The transgenic rice lines were similar in size to wild-type plants at the vegetative stage and at maturity regardless of the N-level tested. However, OsUGE1-OX lines maintained 18-24% more sucrose and 12-22% less cellulose in shoots compared to wild-type when subjected to sub-optimal N-levels. Interestingly, OsUGE1-OX lines maintained proportionally more galactose and glucose in the hemicellulosic polysaccharide profile of plants compared to wild-type plants when grown under low N. The altered cell wall C-partitioning during N-limitation in the OsUGE1-OX lines appears to be mediated by OsUGE1 via the repression of the cellulose synthesis associated genes, OsSus1, OsCesA4, 7, and 9. This relationship may implicate a novel control point for the deposition of UDP-glucose to the complex polysaccharide profiles of rice cell walls. However, a direct relationship between OsUGE1 and cell wall C-partitioning during N-limitation requires further investigation.


Asunto(s)
Pared Celular/metabolismo , Nitrógeno/metabolismo , Oryza/enzimología , Proteínas de Plantas/metabolismo , UDPglucosa 4-Epimerasa/metabolismo , Metabolismo de los Hidratos de Carbono , Pared Celular/enzimología , Celulosa/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/citología , Oryza/genética , Proteínas de Plantas/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Sacarosa/metabolismo , UDPglucosa 4-Epimerasa/genética , Uridina Difosfato Glucosa/metabolismo
4.
Plant Physiol ; 162(1): 132-44, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23548780

RESUMEN

Chloroplast biogenesis has been well documented in higher plants, yet the complex methods used to regulate chloroplast activity under fluctuating environmental conditions are not well understood. In rice (Oryza sativa), the CYTOKININ-RESPONSIVE GATA TRANSCRIPTION FACTOR1 (Cga1) shows increased expression following light, nitrogen, and cytokinin treatments, while darkness and gibberellin reduce expression. Strong overexpression of Cga1 produces dark green, semidwarf plants with reduced tillering, whereas RNA interference knockdown results in reduced chlorophyll and increased tillering. Coexpression, microarray, and real-time expression analyses demonstrate a correlation between Cga1 expression and the expression of important nucleus-encoded, chloroplast-localized genes. Constitutive Cga1 overexpression increases both chloroplast biogenesis and starch production but also results in delayed senescence and reduced grain filling. Growing the transgenic lines under different nitrogen regimes indicates potential agricultural applications for Cga1, including manipulation of biomass, chlorophyll/chloroplast content, and harvest index. These results indicate a conserved mechanism by which Cga1 regulates chloroplast development in higher plants.


Asunto(s)
Cloroplastos/fisiología , Factores de Transcripción GATA/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Biomasa , Clorofila/análisis , Clorofila/metabolismo , Citocininas/metabolismo , Oscuridad , Flores/citología , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Factores de Transcripción GATA/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Giberelinas/metabolismo , Luz , Nitrógeno/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/citología , Oryza/crecimiento & desarrollo , Oryza/fisiología , Fotosíntesis , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Interferencia de ARN , Semillas/citología , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología , Almidón/análisis , Almidón/metabolismo
5.
BMC Plant Biol ; 12: 175, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23025749

RESUMEN

BACKGROUND: Thellungiella salsuginea is an important model plant due to its natural tolerance to abiotic stresses including salt, cold, and water deficits. Microarray and metabolite profiling have shown that Thellungiella undergoes stress-responsive changes in transcript and organic solute abundance when grown under controlled environmental conditions. However, few reports assess the capacity of plants to display stress-responsive traits in natural habitats where concurrent stresses are the norm. RESULTS: To determine whether stress-responsive changes observed in cabinet-grown plants are recapitulated in the field, we analyzed leaf transcript and metabolic profiles of Thellungiella growing in its native Yukon habitat during two years of contrasting meteorological conditions. We found 673 genes showing differential expression between field and unstressed, chamber-grown plants. There were comparatively few overlaps between genes expressed under field and cabinet treatment-specific conditions. Only 20 of 99 drought-responsive genes were expressed both in the field during a year of low precipitation and in plants subjected to drought treatments in cabinets. There was also a general pattern of lower abundance among metabolites found in field plants relative to control or stress-treated plants in growth cabinets. Nutrient availability may explain some of the observed differences. For example, proline accumulated to high levels in cold and salt-stressed cabinet-grown plants but proline content was, by comparison, negligible in plants at a saline Yukon field site. We show that proline accumulated in a stress-responsive manner in Thellungiella plants salinized in growth cabinets and in salt-stressed seedlings when nitrogen was provided at 1.0 mM. In seedlings grown on 0.1 mM nitrogen medium, the proline content was low while carbohydrates increased. The relatively higher content of sugar-like compounds in field plants and seedlings on low nitrogen media suggests that Thellungiella shows metabolic plasticity in response to environmental stress and that resource availability can influence the expression of stress tolerance traits under field conditions. CONCLUSION: Comparisons between Thellungiella plants responding to stress in cabinets and in their natural habitats showed differences but also overlap between transcript and metabolite profiles. The traits in common offer potential targets for improving crops that must respond appropriately to multiple, concurrent stresses.


Asunto(s)
Brassicaceae/genética , Metaboloma , Fenotipo , Estrés Fisiológico , Transcriptoma , Brassicaceae/crecimiento & desarrollo , Brassicaceae/metabolismo , Sequías , Ecosistema , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Prolina/metabolismo , Salinidad , Cloruro de Sodio/metabolismo , Suelo/química , El Yukón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...