Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 33(31): e2101757, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34165826

RESUMEN

Strongly electric fish use gradients of ions within their bodies to generate stunning external electrical discharges; the most powerful of these organisms, the Atlantic torpedo ray, can produce pulses of over 1 kW from its electric organs. Despite extensive study of this phenomenon in nature, the development of artificial power generation schemes based on ion gradients for portable, wearable, or implantable human use has remained out of reach. Previously, an artificial electric organ inspired by the electric eel demonstrated that electricity generated from ion gradients within stacked hydrogels can exceed 100 V. The current of this power source, however, was too low to power standard electronics. Here, an artificial electric organ inspired by the unique morphologies of torpedo rays for maximal current output is introduced. This power source uses a hybrid material of hydrogel-infused paper to create, organize, and reconfigure stacks of thin, arbitrarily large gel films in series and in parallel. The resulting increase in electrical power by almost two orders of magnitude compared to the original eel-inspired design makes it possible to power electronic devices and establishes that biology's mechanism of generating significant electrical power can now be realized from benign and soft materials in a portable size.

2.
Adv Sci (Weinh) ; 8(15): e2100995, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34047491

RESUMEN

As wearable technologies redefine the way people exchange information, receive entertainment, and monitor health, the development of sustainable power sources that capture energy from the user's everyday activities garners increasing interest. Electric fishes, such as the electric eel and the torpedo ray, provide inspiration for such a power source with their ability to generate massive discharges of electricity solely from the metabolic processes within their bodies. Inspired by their example, the device presented in this work harnesses electric power from ion gradients established by capturing the carbon dioxide (CO2 ) from human breath. Upon localized exposure to CO2 , this novel adaptation of reverse electrodialysis chemically generates ion gradients from a single initial solution uniformly distributed throughout the device instead of requiring the active circulation of two different external solutions. A thorough analysis of the relationship between electrical output and the concentration of carbon capture agent (monoethanolamine, MEA), the amount of CO2 captured, and the device geometry informs device design. The prototype device presented here harvests enough energy from a breath-generated ion gradient to power small electronic devices, such as a light-emitting diode (LED).

4.
Sci Adv ; 5(5): eaaw4783, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31049402

RESUMEN

Maintaining membrane integrity is a challenge at extreme temperatures. Biochemical synthesis of membrane-spanning lipids is one adaptation that organisms such as thermophilic archaea have evolved to meet this challenge and preserve vital cellular function at high temperatures. The molecular-level details of how these tethered lipids affect membrane dynamics and function, however, remain unclear. Using synthetic monolayer-forming lipids with transmembrane tethers, here, we reveal that lipid tethering makes membrane permeation an entropically controlled process that helps to limit membrane leakage at elevated temperatures relative to bilayer-forming lipid membranes. All-atom molecular dynamics simulations support a view that permeation through membranes made of tethered lipids reduces the torsional entropy of the lipids and leads to tighter lipid packing, providing a molecular interpretation for the increased transition-state entropy of leakage.


Asunto(s)
Archaea/fisiología , Permeabilidad de la Membrana Celular/fisiología , Entropía , Calor , Membrana Dobles de Lípidos/química , Adaptación Fisiológica , Rastreo Diferencial de Calorimetría , Microscopía por Crioelectrón , Liposomas , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular
5.
ACS Nano ; 12(11): 11458-11470, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30335956

RESUMEN

Nanopores with diameters from 20 to 50 nm in silicon nitride (SiN x) windows are useful for single-molecule studies of globular macromolecules. While controlled breakdown (CBD) is gaining popularity as a method for fabricating nanopores with reproducible size control and broad accessibility, attempts to fabricate large nanopores with diameters exceeding ∼20 nm via breakdown often result in undesirable formation of multiple nanopores in SiN x membranes. To reduce the probability of producing multiple pores, we combined two strategies: laser-assisted breakdown and controlled pore enlargement by limiting the applied voltage. Based on laser power-dependent increases in nanopore conductance upon illumination and on the absence of an effect of ionic strength on the ratio between the nanopore conductance before and after laser illumination, we suggest that the increased rate of controlled breakdown results from laser-induced heating. Moreover, we demonstrate that conductance values before and after coating the nanopores with a fluid lipid bilayer can indicate fabrication of a single nanopore versus multiple nanopores. Complementary flux measurements of Ca2+ through the nanopore typically confirmed assessments of single or multiple nanopores that we obtained using the coating method. Finally, we show that thermal annealing of CBD pores significantly increased the success rate of coating and reduced the current noise before and after lipid coating. We characterize the geometry of these nanopores by analyzing individual resistive pulses produced by translocations of spherical proteins and demonstrate the usefulness of these nanopores for estimating the approximate molecular shape of IgG proteins.

6.
Adv Mater ; 30(19): e1704603, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29345378

RESUMEN

While mechanochemical transduction principles are omnipresent in nature, mimicking these in artificial materials is challenging. The ability to reliably detect the exposure of man-made objects to mechanical forces is, however, of great interest for many applications, including structural health monitoring and tamper-proof packaging. A useful concept to achieve mechanochromic responses in polymers is the integration of microcapsules, which rupture upon deformation and release a payload causing a visually detectable response. Herein, it is reported that this approach can be used to create mechanochromic fluorescent materials that show a direct and ratiometric response to mechanical deformation. This can be achieved by filling poly(urea-formaldehyde) microcapsules with a solution of a photoluminescent aggregachromic cyano-substituted oligo(p-phenylene vinylene) and embedding these particles in poly(dimethylsiloxane). The application of mechanical force by way of impact, incision, or tensile deformation opens the microcapsules and releases the fluorophore in the damaged area. Due to excimer formation, the subsequent aggregation of the dye furnishes a detectable fluorescence color change. With the emission from unopened microcapsules as built-in reference, the approach affords materials that are self-calibrating. This new concept appears to be readily applicable to a range of polymer matrices and allows for the straightforward assessment of their structural integrity.

7.
Nature ; 552(7684): 214-218, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29239354

RESUMEN

Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.


Asunto(s)
Órganos Artificiales , Biomimética/métodos , Suministros de Energía Eléctrica , Electrophorus , Hidrogeles/química , Animales , Órgano Eléctrico/fisiología , Electrophorus/fisiología , Microfluídica/instrumentación , Impresión Tridimensional/instrumentación , Prótesis e Implantes
8.
PLoS One ; 10(10): e0139725, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26431207

RESUMEN

The CUL4-DDB1 E3 ligase complex serves as a critical regulator in various cellular processes, including cell proliferation, DNA damage repair, and cell cycle progression. However, whether this E3 ligase complex regulates clock protein turnover and the molecular clock activity in mammalian cells is unknown. Here we show that CUL4-DDB1-CDT2 E3 ligase ubiquitinates CRY1 and promotes its degradation both in vitro and in vivo. Depletion of the major components of this E3 ligase complex, including Ddb1, Cdt2, and Cdt2-cofactor Pcna, leads to CRY1 stabilization in cultured cells or in the mouse liver. CUL4A-DDB1-CDT2 E3 ligase targets lysine 585 within the C-terminal region of CRY1 protein, shown by the CRY1 585KA mutant's resistance to ubiquitination and degradation mediated by the CUL4A-DDB1 complex. Surprisingly, both depletion of Ddb1 and over-expression of Cry1-585KA mutant enhance the oscillatory amplitude of the Bmal1 promoter activity without altering its period length, suggesting that CUL4A-DDB1-CDT2 E3 targets CRY1 for degradation and reduces the circadian amplitude. All together, we uncovered a novel biological role for CUL4A-DDB1-CDT2 E3 ligase that regulates molecular circadian behaviors via promoting ubiquitination-dependent degradation of CRY1.


Asunto(s)
Relojes Biológicos , Criptocromos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Masculino , Ratones , Proteolisis , Ubiquitinación
9.
J Biol Chem ; 289(37): 25925-35, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25063808

RESUMEN

The clock protein BMAL1 (brain and muscle Arnt-like protein 1) participates in circadian regulation of lipid metabolism, but its contribution to insulin AKT-regulated hepatic lipid synthesis is unclear. Here we used both Bmal1(-/-) and acute liver-specific Bmal1-depleted mice to study the role of BMAL1 in refeeding-induced de novo lipogenesis in the liver. Both global deficiency and acute hepatic depletion of Bmal1 reduced lipogenic gene expression in the liver upon refeeding. Conversely, Bmal1 overexpression in mouse liver by adenovirus was sufficient to elevate the levels of mRNA of lipogenic enzymes. Bmal1(-/-) primary mouse hepatocytes displayed decreased levels of de novo lipogenesis and lipogenic enzymes, supporting the notion that BMAL1 regulates lipid synthesis in hepatocytes in a cell-autonomous manner. Both refed mouse liver and insulin-treated primary mouse hepatocytes showed impaired AKT activation in the case of either Bmal1 deficiency or Bmal1 depletion by adenoviral shRNA. Restoring AKT activity by a constitutively active mutant of AKT nearly normalized de novo lipogenesis in Bmal1(-/-) hepatocytes. Finally, Bmal1 deficiency or knockdown decreased the protein abundance of RICTOR, the key component of the mTORC2 complex, without affecting the gene expression of key factors of insulin signaling. Thus, our study uncovered a novel metabolic function of hepatic BMAL1 that promotes de novo lipogenesis via the insulin-mTORC2-AKT signaling during refeeding.


Asunto(s)
Factores de Transcripción ARNTL/genética , Insulina/metabolismo , Lipogénesis , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción ARNTL/antagonistas & inhibidores , Animales , Ingestión de Alimentos/genética , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Resistencia a la Insulina/genética , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Transducción de Señal
10.
J Biol Chem ; 288(8): 5417-25, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23283977

RESUMEN

The liver responds to fasting-refeeding cycles by reprogramming expression of metabolic genes. Fasting potently induces one of the key hepatic hormones, fibroblast growth factor 21 (FGF21), to promote lipolysis, fatty acid oxidation, and ketogenesis, whereas refeeding suppresses its expression. We previously reported that the basic leucine zipper transcription factor E4BP4 (E4 binding protein 4) represses Fgf21 expression and disrupts its circadian oscillations in cultured hepatocytes. However, the epigenetic mechanism for E4BP4-dependent suppression of Fgf21 has not yet been addressed. Here we present evidence that histone methyltransferase G9a mediates E4BP4-dependent repression of Fgf21 during refeeding by promoting repressive histone modification. We find that Fgf21 expression is up-regulated in E4bp4 knock-out mouse liver. We demonstrate that the G9a-specific inhibitor BIX01294 abolishes suppression of the Fgf21 promoter activity by E4BP4, whereas overexpression of E4bp4 leads to increased levels of dimethylation of histone 3 lysine 9 (H3K9me2) around the Fgf21 promoter region. Furthermore, we also show that E4BP4 interacts with G9a, and knockdown of G9a blocks repression of Fgf21 promoter activity and expression in cells overexpressing E4bp4. A G9a mutant lacking catalytic activity, due to deletion of the SET domain, fails to inhibit the Fgf21 promoter activity. Importantly, acute hepatic knockdown by adenoviral shRNA targeting G9a abolishes Fgf21 repression by refeeding, concomitant with decreased levels of H3K9me2 around the Fgf21 promoter region. In summary, we show that G9a mediates E4BP4-dependent suppression of hepatic Fgf21 by enhancing histone methylation (H3K9me2) of the Fgf21 promoter.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Epigénesis Genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Adenoviridae/genética , Animales , Ritmo Circadiano , Células HEK293 , Histona Metiltransferasas , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Plásmidos/metabolismo , Regiones Promotoras Genéticas , ARN Interferente Pequeño/metabolismo
11.
J Biol Chem ; 287(30): 25280-91, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22669941

RESUMEN

The mammalian circadian clock coordinates various physiological activities with environmental cues to achieve optimal adaptation. The clock manifests oscillations of key clock proteins, which are under dynamic control at multiple post-translational levels. As a major post-translational regulator, the ubiquitination-dependent proteasome degradation system is counterbalanced by a large group of deubiquitin proteases with distinct substrate preference. Until now, whether deubiquitination by ubiquitin-specific proteases can regulate the clock protein stability and circadian pathways remains largely unclear. The mammalian clock protein, cryptochrome 1 (CRY1), is degraded via the FBXL3-mediated ubiquitination pathway, suggesting that it is also likely to be targeted by the deubiquitination pathway. Here, we identified that USP2a, a circadian-controlled deubiquitinating enzyme, interacts with CRY1 and enhances its protein stability via deubiquitination upon serum shock. Depletion of Usp2a by shRNA greatly enhances the ubiquitination of CRY1 and dampens the oscillation amplitude of the CRY1 protein during a circadian cycle. By stabilizing the CRY1 protein, USP2a represses the Per2 promoter activity as well as the endogenous Per2 gene expression. We also demonstrated that USP2a-dependent deubiquitination and stabilization of the CRY1 protein occur in the mouse liver. Interestingly, the pro-inflammatory cytokine, TNF-α, increases the CRY1 protein level and inhibits circadian gene expression in a USP2a-dependent fashion. Therefore, USP2a potentially mediates circadian disruption by suppressing the CRY1 degradation during inflammation.


Asunto(s)
Relojes Circadianos/fisiología , Criptocromos/metabolismo , Endopeptidasas/metabolismo , Proteolisis , Transducción de Señal/fisiología , Ubiquitinación/fisiología , Animales , Criptocromos/genética , Endopeptidasas/genética , Regulación de la Expresión Génica/fisiología , Células Hep G2 , Humanos , Inflamación/genética , Inflamación/metabolismo , Hígado/metabolismo , Ratones , Células 3T3 NIH , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Regiones Promotoras Genéticas/fisiología , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina Tiolesterasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...