Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 465: 133203, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38103294

RESUMEN

Antibacterial compounds that reduce extracellular polymeric substances (EPS) are needed to avoid bacterial biofilms in water pipelines. Herein, green one-pot synthesis of α-aminophosphonates (α-Amps) [A-G] was achieved by using ionic liquid (IL) as a Lewis acid catalyst. The synthesized α-Amp analogues were tested against different bacteria such as Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The representative [B] analogue showed an efficient antibacterial effect with MIC values of 3.13 µg/mL for E. coli, P. aeruginosa, and 6.25 µg/mL for B. subtilis. Additionally, a strong ability to eliminate the mature bacterial biofilm, with super-MIC values of 12.5 µg/mL for E. coli, P. aeruginosa, and 25 µg/mL for B. subtilis. Moreover, bacterial cell disruption by ROS formation was also tested, and the compound [B] revealed the highest ROS level compared to other compounds and the control, and efficiently destroyed the extracellular polymeric substances (EPS). The docking study confirmed strong interactions between [B] analogue and protein structures with a binding affinity of -6.65 kCal/mol for the lyase protein of gram-positive bacteria and -6.46 kCal/mol for DNA gyrase of gram-negative bacteria. The results showed that α-Amps moiety is a promising candidate for developing novel antibacterial and anti-biofilm agents for clean water supply.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/química , Simulación del Acoplamiento Molecular , Especies Reactivas de Oxígeno , Bacterias , Biopelículas , Pruebas de Sensibilidad Microbiana
2.
Gels ; 9(2)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36826322

RESUMEN

Although Cs(I) and Sr(II) are not strategic and hazardous metal ions, their recovery from aqueous solutions is of great concern for the nuclear industry. The objective of this work consists of designing a new sorbent for the simultaneous recovery of these metals with selectivity against other metals. The strategy is based on the functionalization of algal/polyethyleneimine hydrogel beads by phosphonation. The materials are characterized by textural, thermo-degradation, FTIR, elemental, titration, and SEM-EDX analyses to confirm the chemical modification. To evaluate the validity of this modification, the sorption of Cs(I) and Sr(II) is compared with pristine support under different operating conditions: the pH effect, kinetics, and isotherms are investigated in mono-component and binary solutions, before investigating the selectivity (against competitor metals) and the possibility to reuse the sorbent. The functionalized sorbent shows a preference for Sr(II), enhanced sorption capacities, a higher stability at recycling, and greater selectivity against alkali, alkaline-earth, and heavy metal ions. Finally, the sorption properties are compared for Cs(I) and Sr(II) removal in a complex solution (seawater sample). The combination of these results confirms the superiority of phosphonated sorbent over pristine support with promising performances to be further evaluated with effluents containing radionuclides.

3.
Int J Biol Macromol ; 232: 123355, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36682653

RESUMEN

Hydrogel membranes are prepared by casting a mixture of gellan gum (associated with PVA) and biochar produced from a local Egyptian plant. The mesoporous material is characterized by a specific surface area close to 134 m2 g-1, a residue of 28 % (at 800 °C), and a pHPZC close to 6.43. After grinding, the material is tested for Methylene Blue sorption at pH 10.5: sorption capacity reaches 1.70 mmol MB g-1 (synergistic effect of the precursors). The sorption isotherms are fitted by both Langmuir and Sips eqs. MB sorption increases with temperature: the sorption is endothermic (∆H°: 12.9 kJ mol-1), with positive entropy (∆S°: 125 J mol-1 K-1). Uptake kinetics are controlled by agitation speed (optimum ≈200 rpm) and resistance to intraparticle diffusion. The profiles are strongly affected by the mode of agitation: the equilibrium time (≈180 min) is reduced to 20-30 min under sonication (especially at frequency: 80 kHz). The mode of agitation controls the best fitting equation: pseudo-first order rate agitation for mechanical agitation contrary to pseudo-second order rate under sonication. The sorption of MB is poorly affected by ionic strength (loss <6 % in 45 g L-1 NaCl solution). Desorption (faster than sorption) is completely achieved using 0.7 M HCl solution. At the sixth recycling, the loss in sorption is close to 5 % (≈ decrease in desorption efficiency). The process is successfully applied for the treatment of MB-spiked industrial solution: the color index decreases by >97 % with a sorbent dose close to 1 g L-1; a higher dose is required for maximum reduction of the COD (60 % at 3 g L-1).


Asunto(s)
Azul de Metileno , Contaminantes Químicos del Agua , Termodinámica , Azul de Metileno/química , Cinética , Hidrogeles , Agua , Adsorción , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/química , Soluciones
4.
Molecules ; 27(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36364388

RESUMEN

The recovery of strategic metals such as rare earth elements (REEs) requires the development of new sorbents with high sorption capacities and selectivity. The bi-functionality of sorbents showed a remarkable capacity for the enhancement of binding properties. This work compares the sorption properties of magnetic chitosan (MC, prepared by dispersion of hydrothermally precipitated magnetite microparticles (synthesized through Fe(II)/Fe(III) precursors) into chitosan solution and crosslinking with glutaraldehyde) with those of the urea derivative (MC-UR) and its sulfonated derivative (MC-UR/S) for cerium (as an example of REEs). The sorbents were characterized by FTIR, TGA, elemental analysis, SEM-EDX, TEM, VSM, and titration. In a second step, the effect of pH (optimum at pH 5), the uptake kinetics (fitted by the pseudo-first-order rate equation), the sorption isotherms (modeled by the Langmuir equation) are investigated. The successive modifications of magnetic chitosan increases the maximum sorption capacity from 0.28 to 0.845 and 1.25 mmol Ce g-1 (MC, MC-UR, and MC-UR/S, respectively). The bi-functionalization strongly increases the selectivity of the sorbent for Ce(III) through multi-component equimolar solutions (especially at pH 4). The functionalization notably increases the stability at recycling (for at least 5 cycles), using 0.2 M HCl for the complete desorption of cerium from the loaded sorbent. The bi-functionalized sorbent was successfully tested for the recovery of cerium from pre-treated acidic leachates, recovered from low-grade cerium-bearing Egyptian ore.


Asunto(s)
Cerio , Quitosano , Quitosano/química , Óxido Ferrosoférrico , Adsorción , Urea , Compuestos Férricos , Concentración de Iones de Hidrógeno , Cinética
5.
Molecules ; 27(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36296719

RESUMEN

Sulfonic resins are highly efficient cation exchangers widely used for metal removal from aqueous solutions. Herein, a new sulfonation process is designed for the sulfonation of algal/PEI composite (A*PEI, by reaction with 2-propylene-1-sulfonic acid and hydroxylamine-O-sulfonic acid). The new sulfonated functionalized sorbent (SA*PEI) is successfully tested in batch systems for strontium recovery first in synthetic solutions before investigating with multi-component solutions and final validation with seawater samples. The chemical modification of A*PEI triples the sorption capacity for Sr(II) at pH 4 with a removal rate of up to 7% and 58% for A*PEI and SA*PEI, respectively (with SD: 0.67 g L-1). FTIR shows the strong contribution of sulfonate groups for the functionalized sorbent (in addition to amine and carboxylic groups from the support). The sorption is endothermic (increase in sorption with temperature). The sulfonation improves thermal stability and slightly enhances textural properties. This may explain the fast kinetics (which are controlled by the pseudo-first-order rate equation). The sulfonated sorbent shows a remarkable preference for Sr(II) over competitor mono-, di-, and tri-valent metal cations. Sorption properties are weakly influenced by the excess of NaCl; this can explain the outstanding sorption properties in the treatment of seawater samples. In addition, the sulfonated sorbent shows excellent stability at recycling (for at least 5 cycles), with a loss in capacity of around 2.2%. These preliminary results show the remarkable efficiency of the sorbent for Sr(II) removal from complex solutions (this could open perspectives for the treatment of contaminated seawater samples).


Asunto(s)
Contaminantes Químicos del Agua , Adsorción , Contaminantes Químicos del Agua/química , Cloruro de Sodio , Agua de Mar , Agua , Cinética , Estroncio , Ácidos Sulfónicos , Aminas , Concentración de Iones de Hidrógeno
6.
Sci Total Environ ; 821: 153184, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35051487

RESUMEN

Urea and thiourea have been successfully deposited at the surface of silica beads (through one-pot reaction with formaldehyde) for designing new sorbents for U(VI) and Th(IV) recovery (UR/SiO2 and TUR/SiO2 composites, respectively). These materials have been characterized by FTIR, titration, elemental analysis, BET, TGA, SEM-EDX for identification of structural and chemical properties, and interpretation of binding mechanisms. Based on deprotonation of reactive groups (amine, carbonyl, or thiocarbonyl) and metal speciation, the optimum pH was ~4. Uptake kinetics was fast (equilibrium within 60-90 min). Although the kinetic profiles are fitted by the pseudo-first order rate equation, the resistance to intraparticle diffusion cannot be neglected. Sorption isotherms were fitted by Langmuir equation (maximum sorption capacities: 1-1.2 mmol g-1). Thermodynamics are also investigated showing differences between the two types of functionalized groups: exothermic for TUR/SiO2 and endothermic for UR/SiO2. Metal desorption is highly effective using 0.3-0.5 M HCl solutions: total desorption occurs within 30-60 min; sorption/desorption properties are remarkably stable for at least 5 cycles. The sorbents have marked preference for U(VI) and Th(IV) over alkali-earth and base metals at pHeq ~4.8. By preliminary precipitation steps, it is possible "cleaning" ore leachates of pegmatite ore, and recovering U(VI) and Th(IV) using functionalized silica beads. After elution and selective recovery by precipitation with oxalate (Th-cake) and alkaline (U-cake), the metals can be valorized.


Asunto(s)
Polímeros , Dióxido de Silicio , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Polímeros/química , Dióxido de Silicio/química , Tiourea , Urea
7.
Polymers (Basel) ; 13(9)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066682

RESUMEN

High-tech applications require increasing amounts of rare earth elements (REE). Their recovery from low-grade minerals and their recycling from secondary sources (as waste materials) are of critical importance. There is increasing attention paid to the development of new sorbents for REE recovery from dilute solutions. A new generation of composite sorbents based on brown algal biomass (alginate) and polyethylenimine (PEI) was recently developed (ALPEI hydrogel beads). The phosphorylation of the beads strongly improves the affinity of the sorbents for REEs (such as La and Tb): by 4.5 to 6.9 times compared with raw beads. The synthesis procedure (epicholorhydrin-activation, phosphorylation and de-esterification) is investigated by XPS and FTIR for characterizing the grafting route but also for interpreting the binding mechanism (contribution of N-bearing from PEI, O-bearing from alginate and P-bearing groups). Metal ions can be readily eluted using an acidic calcium chloride solution, which regenerates the sorbent: the FTIR spectra are hardly changed after five successive cycles of sorption and desorption. The materials are also characterized by elemental, textural and thermogravimetric analyses. The phosphorylation of ALPEI beads by this new method opens promising perspectives for the recovery of these strategic metals from mild acid solutions (i.e., pH ~ 4).

8.
Chemosphere ; 281: 130844, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34022599

RESUMEN

APEI beads (algal/alginate-PEI) were quaternized for enhancing the sorption of Cr(VI) (Q-APEI). The readily reduction of Cr(VI) into Cr(III) in acidic solution and in the presence of organic material constitute an additional phenomenon to be taken into account for the removal of Cr(VI) by Q-APEI. The optimal pH value for both the sorption and reduction of Cr(VI) was close to 2. The sorption isotherm was well described by the Sips model in batch system; the experimental maximum Cr(VI) sorption capacity of Q-APEI was 334 mg Cr(VI) g-1, including a reduction yield close to 25%. The pseudo-second-order kinetic model (PSORE) and the Yan model fit the uptake kinetics and breakthrough curves, in a fixed-bed system with circulation or single-path modes, respectively. The mechanism of reduction-assisted sorption allows boosting the global removal of chromate. Furthermore, the testing of Cr(VI) for three successive sorption and desorption cycles shows the remarkable stability of the sorbent for Cr(VI) removal. The Cr(VI) sorption coupled reduction mechanism and interactions between the sorbent and Cr(VI) were further explained using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS).


Asunto(s)
Alginatos , Contaminantes Químicos del Agua , Adsorción , Cromo/análisis , Concentración de Iones de Hidrógeno , Cinética
9.
Molecules ; 26(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805524

RESUMEN

The development of new materials is needed to address the environmental challenges of wastewater treatment. The phosphorylation of guar gum combined with its association to chitosan allows preparing an efficient sorbent for the removal of U(VI) from slightly acidic solutions. The incorporation of magnetite nanoparticles enhances solid/liquid. Functional groups are characterized by FTIR spectroscopy while textural properties are qualified by N2 adsorption. The optimum pH is close to 4 (deprotonation of amine and phosphonate groups). Uptake kinetics are fast (60 min of contact), fitted by a pseudo-first order rate equation. Maximum sorption capacities are close to 1.28 and 1.16 mmol U g-1 (non-magnetic and magnetic, respectively), while the sorption isotherms are fitted by Langmuir equation. Uranyl desorption (using 0.2 M HCl solutions) is achieved within 20-30 min; the sorbents can be recycled for at least five cycles (5-6% loss in sorption performance, complete desorption). In multi-component solutions, the sorbents show marked preference for U(VI) and Nd(III) over alkali-earth metals and Si(IV). The zone of exclusion method shows that magnetic sorbent has antibacterial effects against both Gram+ and Gram- bacteria, contrary to non-magnetic material (only Gram+ bacteria). The magnetic composite is highly promising as antimicrobial support and for recovery of valuable metals.


Asunto(s)
Quitosano/química , Galactanos/química , Nanopartículas de Magnetita/química , Mananos/química , Nanocompuestos/química , Gomas de Plantas/química , Uranio/química , Purificación del Agua/métodos , Adsorción , Antibacterianos/química , Antibacterianos/farmacología , Bacterias Grampositivas/efectos de los fármacos , Cinética , Fosforilación
10.
Molecules ; 26(4)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671351

RESUMEN

The strong demand for rare-earth elements (REEs) is driven by their wide use in high-tech devices. New processes have to be developed for valorizing low-grade ores or alternative metal sources (such as wastes and spent materials). The present work contributed to the development of new sorbents for the recovery of rare earth ions from aqueous solutions. Functionalized mesoporous silica composite was synthesized by grafting diethylenetriamine onto composite support. The physical and chemical properties of the new sorbent are characterized using BET, TGA, elemental analysis, titration, FTIR, and XPS spectroscopies to identify the reactive groups (amine groups: 3.25 mmol N g-1 and 3.41 by EA and titration, respectively) and their mode of interaction with Nd(III) and Gd(III). The sorption capacity at the optimum pH (i.e., 4) reaches 0.9 mmol Nd g-1 and 1 mmol Gd g-1. Uptake kinetics are modeled by the pseudo-first-order rate equation (equilibrium time: 30-40 min). At pH close to 4-5, the sorbent shows high selectivity for rare-earth elements against alkali-earth elements. This selectivity is confirmed by the efficient recovery of REEs from acidic leachates of gibbsite ore. After elution (using 0.5 M HCl solutions), selective precipitation (using oxalate solutions), and calcination, pure rare earth oxides were obtained. The sorbent shows promising perspective due to its high and fast sorption properties for REEs, good recycling, and high selectivity.


Asunto(s)
Aminas/química , Gadolinio/química , Neodimio/química , Polímeros/química , Dióxido de Silicio/química , Adsorción , Concentración de Iones de Hidrógeno , Residuos Industriales/análisis , Cinética , Espectroscopía de Fotoelectrones , Porosidad , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier
11.
Carbohydr Polym ; 257: 117588, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33541633

RESUMEN

This study investigates Hg(II) and Cu(II) sorption in single and binary systems by alginate/polyethylenimine membranes. Batch experiments are conducted to assess the metal sorption performance. FTIR and SEM-EDX analyses are used to identify metal binding mechanism. The sorption kinetics are better fitted by the pseudo-second-order-equation compared to the pseudo-first-order-equation. Three isotherms are compared for fitting the sorption in mono-component solutions and the Sips model gives the best simulation of experimental data. The competitive-Sips model fits well sorption data in Hg-Cu binary solutions and finds that the Cu uptake is drastically reduced by Hg competition. Copper(II) uptake remains negligible at low pH whereas it increases with pH up to 6 because of material deprotonation. Mercury(II) sorption behaves differently, it slightly changes from pH 1 (qeq: 0.76 mmol g-1) to pH 6 (qeq: 0.84 mmol g-1) due to chloro-anion formation. Therefore, playing with the pH allows separating Hg(II) from Cu(II).

12.
Carbohydr Polym ; 250: 116910, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33049885

RESUMEN

A new biosourced composite foam (AF, associating foamed alginate matrix and orange peel filler) is successfully tested for fire-retardant properties. This material having similar thermal insulating properties and density than fire-retardant polyurethane foam (FR-PUF, a commercial product) shows promising enhanced properties for flame retardancy, as assessed by different methods such as thermogravimetric analysis (TGA), pyrolysis combustion flow calorimetry (PCFC) and a newly designed apparatus called RAPACES for investigating large-scale samples. All these methods confirm the promising properties of this alternative material in terms of fire protection (pHRR, THR, EHC, time-to-ignition, flame duration or production of residue), especially for heat flux not exceeding 50 kW m-2. At higher heat flux (i.e., 75 kW m-2), flame retardant properties tend to decrease but maintain at a higher level than FR-PUF. The investigation of the effect of AF thickness shows that the critical thickness (CT) is close to 1.5-1.7 cm: heat diffusion and material combustion are limited to the CT layer that protects the underlying layers from combustion. A multiplicity of factors can explain this behavior, such as: (a) negligible heat conduction, (b) low heat of combustion, (c) charring formation, and (d) water release. Water being released from underlying layers, dilutes the gases emitted during the combustion of superficial layers and promotes the flame extinction.


Asunto(s)
Alginatos/química , Retardadores de Llama/análisis , Poliuretanos/química , Conductividad Térmica , Agua/análisis
13.
Environ Sci Pollut Res Int ; 27(25): 31278-31288, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32488709

RESUMEN

Three commercial resins bearing sulfonic, amino phosphonic, or phosphonic/sulfonic reactive groups have been tested for the removal of iron and cadmium from phosphoric acid solutions. The sorption properties are compared for different experimental conditions such as sorbent dosage (0.5-2.5 g L-1), phosphoric acid concentration (from bi-component solutions, 0.25-2 M), and metal concentrations (i.e., in the range 0.27-2.7 mmol Cd L-1 and 0.54 mmol Fe L-1) with a special attention paid to the impact of the type of reactive groups held on the resins. The sulfonic-based resin (MTC1600H) is more selective for Cd (against Fe), especially at high phosphoric acid concentration and low sorbent dosage, while MTS9500 (aminophosphonic resin) is more selective for Fe removal (regardless of acid concentration and sorbent dosage). Equilibrium is reached within 2-4 h. The resins can be ranked in terms of cumulative sorption capacities according the series: MTC1600H > MTS9570 > MTS 9500. Sulfuric acid (0.5-1 M) can be efficiently used for the desorption of both iron and cadmium for MTC1600H, while for MTS9570 (phosphonic/sulfonic resin) sulfuric acid correctly desorbs Cd (above 96% at 1 M concentration), contrary to Fe (less than 30%). The aminophosphonic resin shows much poorer efficiency in terms of desorption. The sulfonic resin (i.e., MTC1600H) shows much higher sorption capacity, better selectivity, comparable uptake kinetics (about 2 h equilibrium time), and better metal desorption ability (higher than 98% with 1 M acid concentration, regardless of the type of acid). This conclusion is confirmed by the comparison of removal properties in the treatment of different types of industrial phosphoric acid solutions (crude, and pre-treated H3PO4 solutions). The three resins are inefficient for the treatment of crude phosphoric acid, and activated charcoal pre-treatment (MTC1600H reduced cadmium content by 77%). However, MTC1600H allows removing over 93% of Fe and Cd for H3PO4 pre-treated by TBP solvent extraction, while the others show much lower efficiencies (< 53%).


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cadmio/análisis , Concentración de Iones de Hidrógeno , Hierro , Cinética , Ácidos Fosfóricos
14.
Environ Pollut ; 264: 114797, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32559874

RESUMEN

A high-energy ball milling of magnetite nanoparticles with amino-phosphonic functionalized poly(glycidyl methacrylate) polymer is used for manufacturing a highly efficient magnetic sorbent for U(VI) sorption from aqueous solutions. The Uranyl ions were adsorbed through the binding with amine and phosphonic groups as confirmed by Fourier Transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. The maximum sorption capacity (up to 270 mg U g-1) occurred at pH = 3-4; Langmuir isotherm well describes the sorption process. Small-size particles allow achieving fast uptake (within ≈90 min of contact); and the kinetic profiles are modeled by the pseudo-second order rate equation. Uranium is successfully desorbed from loaded sorbent using 0.25 M NaHCO3 solution: Sorbent can be recycled with minimal decrease in sorption and desorption efficiency for at least 6 cycles. The sorbent is efficiently used for U(VI) recovery from the acidic leachates of U-bearing ores (after precipitation pre-treatment). Sorption capacity approaches 190 mg U g-1 despite the presence of high concentrations of Fe and Si: the sorbent has a marked preference for U(VI) (confirmed by distribution ratios and selectivity coefficients).


Asunto(s)
Nanocompuestos , Uranio , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Fenómenos Magnéticos , Ácidos Polimetacrílicos
15.
Gels ; 6(2)2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235683

RESUMEN

The necessity to recover uranium from dilute solutions (for environmental/safety and resource management) is driving research towards developing new sorbents. This study focuses on the enhancement of U(VI) sorption properties of composite algal/Polyethylenimine beads through the quaternization of the support (by reaction with glycidyltrimethylammonium chloride). The sorbent is fully characterized by FTIR, XPS for confirming the contribution of protonated amine and quaternary ammonium groups on U(VI) binding (with possible contribution of hydroxyl and carboxyl groups, depending on the pH). The sorption properties are investigated in batch with reference to pH effect (optimum value: pH 4), uptake kinetics (equilibrium: 40 min) and sorption isotherms (maximum sorption capacity: 0.86 mmol U g-1). Metal desorption (with 0.5 M NaCl/0.5 M HCl) is highly efficient and the sorbent can be reused for five cycles with limited decrease in performance. The sorbent is successfully applied to the selective recovery of U(VI) from acidic leachate of uranium ore, after pre-treatment (cementation of copper, precipitation of rare earth elements with oxalate, and precipitation of iron). A pure yellow cake is obtained after precipitation of the eluate.

16.
Sci Total Environ ; 719: 137396, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32143096

RESUMEN

Composite beads (APEI*), obtained by the controlled interaction of algal biomass with PEI, followed by ionotropic gelation and crosslinking processes using CaCl2/glutaraldehyde solution, constitute efficient supports for metal binding. The quaternization of algal/PEI beads (Q-APEI*) significantly increases the sorption properties of the composite beads (APEI*) for As(V). The materials are characterized by SEM/EDX, TGA, BET, elemental analysis, FTIR, XPS, and titration. The sorption of As(V) is studied in function of pH while sorption mechanism is discussed in function of metal speciation and surface characteristics of the sorbent. Optimum sorption occurs at pH close to 7. Fast uptake kinetics, correlated to textural properties are successfully fitted by pseudo-first order rate equation and the Crank equation (for resistance to intraparticle diffusion); equilibrium is reached with 45-60 min. The Langmuir equation finely fits sorption isotherms; maximum sorption capacity reaches 1.34 mmol As g-1. Arsenic can be completely eluted using 0.5 M CaCl2/0.5 M HCl solutions; the sorbent maintains high sorption and desorption efficiencies for a minimum of 5 cycles. The sorbent is tested for the removal of As(V) from mining effluents containing high concentration of iron and traces of zinc. At pH 3, the sorbent shows remarkable selectivity for As(V) over Fe. After controlling the initial pH to 5, a sorbent dosage of 2 g L-1 is sufficient for achieving the complete recovery of As(V) from mining effluent (corresponding to initial concentration of 1.295 mmol As L-1).


Asunto(s)
Polietileneimina/química , Adsorción , Arsénico , Concentración de Iones de Hidrógeno , Cinética , Soluciones , Estramenopilos , Agua , Contaminantes Químicos del Agua
17.
Sci Rep ; 10(1): 4812, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179877

RESUMEN

Taraxacum officinale extract (TOE) has been tested for preventing the corrosion of cooling systems in desalination plants. The inhibition of corrosion effects has been characterized by chemical and electrochemical methods (Mass loss, potentiodynamic polarization and electrochemical impedance spectroscopy) and surface observations. Tests on cooling systems were carried out in seawater environment. The presence of TOE in the re-circulation loop decreases the corrosion of carbon steel by adsorption of TOE compounds on the surface of metal pipes. The optimum TOE concentration was reached at 400 mg L-1 and the inhibition efficiency was higher than 94%. TOE allowed increasing the energy barrier of the corrosion process. SEM, FT-IR and UV spectra observations confirmed that TOE prevents corrosion attacks at the surface of the pipes. HPLC analyses identified the presence of saccharides, organic acids, phenol antioxidant and caffeic acid derivatives in TOE, which may be the active promoters of corrosion inhibition.

18.
J Hazard Mater ; 386: 121637, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31740300

RESUMEN

This study synthesizes polyethyleneimine-glutaraldehyde (PEI-GA) resins using different amounts of GA to crosslink with a certain amount of PEI and compares these adsorbents for the adsorption of Cu(II) (cations) and Se(VI) (anions). Moreover, the stability of adsorption affinity of PEI-GA resins stored in open or sealed conditions is also studied. Results show that the amount of GA for PEI crosslinking does not affect the adsorption performance for Se(VI), especially when PEI/GA mass ratio is less than 2, while for Cu(II), the increase on GA amount decreases Cu(II) adsorption capacity. This difference is directly correlated to the change in the adsorption mechanism from electrostatic attraction to chelation. The primary and secondary amine groups on PEI can easily react with CO2 in the air to form carbamate, potentially affecting the adsorption performance of PEI. Results also indicate that the adsorption efficiency for Se(VI) is hardly affected by the storage condition, while that for Cu(II) decreases significantly after 20-day storage compared to the freshly prepared ones. In addition, all of the adsorbents can selectively remove Se(VI) from Se(VI)-As(V) system and Cu(II) from Pb(II)-Cu(II) system, indicating that the crosslinking has no significant influence on the selectivity.

19.
Int J Biol Macromol ; 147: 832-843, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31734361

RESUMEN

New high percolating alginate membranes are designed without using sophisticated drying methods: negatively charged alginate reacts with positively charged polyethylenimine (PEI), prior to be crosslinked with glutaraldehyde and air-dried. This is sufficient to obtain a highly macroporous structured membrane. Highly percolating properties of these new A-PEI membranes make the material applicable in natural drainage systems. The high density of amine groups in composite membranes explain their high affinity for anions in acidic solutions. FTIR, SEM-EDX and XPS analysis are used to explore the sorption mechanism. Se(VI) is sorbed through electrostatic attraction between positive amine groups and negative selenium anions; in a second step, bound Se(VI) is reduced by amine and hydroxyl groups in acidic conditions. A-PEI membranes are successfully used for recovering Se(VI) anions at pH 2. The maximum sorption capacity is close to 83 mg Se g-1; the sorption isotherm is described by the Sips and Langmuir equations. The membranes are poorly sensitive to flow rate in the range 15-50 mL min-1. The kinetic profiles are fitted by the pseudo-first order rate equation. Solute desorption is operated using NaOH solutions; the sorbent shows a remarkable stability in sorption and desorption properties for a minimum of 4 cycles.


Asunto(s)
Alginatos/química , Polietileneimina/química , Selenio/química , Contaminantes Químicos del Agua/química , Purificación del Agua , Agua/química
20.
Molecules ; 24(21)2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31671819

RESUMEN

There is a need for developing new sorbents that incorporate renewable resources for the treatment of metal-containing solutions. Algal-polyethyleneimine beads (APEI) (reinforced with alginate) are functionalized by grafting amidoxime groups (AO-APEI). Physicochemical characteristics of the new material are characterized using FTIR, XPS, TGA, SEM, SEM-EDX, and BET. AO-APEI beads are tested for the recovery of Sr(II) from synthetic solutions after pH optimization (≈ pH 6). Uptake kinetics is fast (equilibrium ≈ 60-90 min). Sorption isotherm (fitted by the Langmuir equation) shows remarkable sorption capacity (≈ 189 mg Sr g-1). Sr(II) is desorbed using 0.2 M HCl/0.5 M CaCl2 solution; sorbent recycling over five cycles shows high stability in terms of sorption/desorption performances. The presence of competitor cations is studied in relation to the pH; the selectivity for Sr(II) is correlated to the softness parameter. Finally, the recovery of Sr(II) is carried out in complex solutions (seawater samples): AO-APEI is remarkably selective over highly concentrated metal cations such as Na(I), K(I), Mg(II), and Ca(II), with weaker selectivity over B(I) and As(V). AO-APEI appears to be a promising material for selective recovery of strontium from complex solutions (including seawater).


Asunto(s)
Microesferas , Oximas/química , Polietileneimina/química , Rhodophyta/química , Estroncio/aislamiento & purificación , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía de Fotoelectrones , Reología , Agua de Mar/química , Soluciones , Temperatura , Contaminantes Químicos del Agua/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA