Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Sci Adv ; 9(43): eadg1641, 2023 10 27.
Article En | MEDLINE | ID: mdl-37878701

Widely documented, megaevolutionary jumps in phenotypic diversity continue to perplex researchers because it remains unclear whether these marked changes can emerge from microevolutionary processes. Here, we tackle this question using new approaches for modeling multivariate traits to evaluate the magnitude and distribution of elaboration and innovation in the evolution of bird beaks. We find that elaboration, evolution along the major axis of phenotypic change, is common at both macro- and megaevolutionary scales, whereas innovation, evolution away from the major axis of phenotypic change, is more prominent at megaevolutionary scales. The major axis of phenotypic change among species beak shapes at megaevolutionary scales is an emergent property of innovation across clades. Our analyses suggest that the reorientation of phenotypes via innovation is a ubiquitous route for divergence that can arise through gradual change alone, opening up further avenues for evolution to explore.


Biological Evolution , Birds , Animals , Beak , Phenotype , Phylogeny
2.
Philos Trans R Soc Lond B Biol Sci ; 378(1880): 20220085, 2023 07 03.
Article En | MEDLINE | ID: mdl-37183893

Incorporating morphological data into modern phylogenies allows integration of fossil evidence, facilitating divergence dating and macroevolutionary inferences. Improvements in the phylogenetic utility of morphological data have been sought via Procrustes-based geometric morphometrics (GMM), but with mixed success and little clarity over what anatomical areas are most suitable. Here, we assess GMM-based phylogenetic reconstructions in a heavily sampled source of discrete characters for mammalian phylogenetics-the basicranium-in 57 species of marsupial mammals, compared with the remainder of the cranium. We show less phylogenetic signal in the basicranium compared with a 'Rest of Cranium' partition, using diverse metrics of phylogenetic signal (Kmult, phylogenetically aligned principal components analysis, comparisons of UPGMA/neighbour-joining/parsimony trees and cophenetic distances to a reference phylogeny) for scaled, Procrustes-aligned landmarks and allometry-corrected residuals. Surprisingly, a similar pattern emerged from parsimony-based analyses of discrete cranial characters. The consistent results across methods suggest that easily computed metrics such as Kmult can provide good guidance on phylogenetic information in a landmarking configuration. In addition, GMM data may be less informative for intricate but conservative anatomical regions such as the basicranium, while better-but not necessarily novel-phylogenetic information can be expected for broadly characterized shapes such as entire bones. This article is part of the theme issue 'The mammalian skull: development, structure and function'.


Marsupialia , Animals , Phylogeny , Skull , Skull Base/anatomy & histology , Biological Evolution
3.
Am Nat ; 196(6): 755-768, 2020 12.
Article En | MEDLINE | ID: mdl-33211559

AbstractAmong vertebrates, placental mammals are particularly variable in the covariance between cranial shape and body size (allometry), with rodents being a major exception. Australian murid rodents allow an assessment of the cause of this anomaly because they radiated on an ecologically diverse continent notably lacking other terrestrial placentals. Here, we use 3D geometric morphometrics to quantify species-level and evolutionary allometries in 38 species (317 crania) from all Australian murid genera. We ask whether ecological opportunity resulted in greater allometric diversity compared with other rodents or whether conserved allometry suggests intrinsic constraints and/or stabilizing selection. We also assess whether cranial shape variation follows the proposed rule of craniofacial evolutionary allometry (CREA), whereby larger species have relatively longer snouts and smaller braincases. To ensure we could differentiate parallel versus nonparallel species-level allometric slopes, we compared the slopes of rarefied samples across all clades. We found exceedingly conserved allometry and CREA-like patterns across the 10-million-year split between Mus and Australian murids. This could support both intrinsic-constraint and stabilizing-selection hypotheses for conserved allometry. Large-bodied frugivores evolved faster than other species along the allometric trajectory, which could suggest stabilizing selection on the shape of the masticatory apparatus as body size changes.


Body Size , Muridae/anatomy & histology , Muridae/classification , Skull/anatomy & histology , Animals , Australia , Biological Evolution , Female , Male , Muridae/genetics , Phylogeny
4.
Ecol Evol ; 10(18): 9707-9720, 2020 Sep.
Article En | MEDLINE | ID: mdl-33005341

The biogeographic distribution of diversity among populations of threatened mammalian species is generally investigated using population genetics. However, intraspecific phenotypic diversity is rarely assessed beyond taxonomy-focused linear measurements or qualitative descriptions. Here, we use a technique widely used in the evolutionary sciences-geometric morphometrics-to characterize shape diversity in the skull of an endangered marsupial, the northern quoll, across its 5,000 km distribution range along Northern Australia. Skull shape is a proxy for feeding, behavior, and phenotypic differentiation, allowing us to ask whether populations can be distinguished and whether patterns of variation indicate adaptability to changing environmental conditions. We analyzed skull shape in 101 individuals across four mainland populations and several islands. We assessed the contribution of population, size, sex, rainfall, temperature, and geography to skull shape variation using principal component analysis, Procrustes ANOVA, and variation partitioning analyses. The populations harbor similar amounts of broadly overlapping skull shape variation, with relatively low geographic effects. Size predicted skull shape best, coinciding with braincase size variation and differences in zygomatic arches. Size-adjusted differences in populations explained less variation with far smaller effect sizes, relating to changes in the insertion areas of masticatory muscles, as well as the upper muzzle and incisor region. Climatic and geographic variables contributed little. Strikingly, the vast majority of shape variation-76%-remained unexplained. Our results suggest a uniform intraspecific scope for shape variation, possibly due to allometric constraints or phenotypic plasticity beyond the relatively strong allometric effect. The lack of local adaptation indicates that cross-breeding between populations will not reduce local morphological skull (and probably general musculoskeletal) adaptation because none exists. However, the potential for heritable morphological variation (e.g., specialization to local diets) seems exceedingly limited. We conclude that 3D geometric morphometrics can provide a comprehensive, statistically rigorous phenomic contribution to genetic-based conservation studies.

5.
Nat Ecol Evol ; 4(11): 1477-1484, 2020 11.
Article En | MEDLINE | ID: mdl-32895518

Endochondral bone is the main internal skeletal tissue of nearly all osteichthyans-the group comprising more than 60,000 living species of bony fishes and tetrapods. Chondrichthyans (sharks and their kin) are the living sister group of osteichthyans and have primarily cartilaginous endoskeletons, long considered the ancestral condition for all jawed vertebrates (gnathostomes). The absence of bone in modern jawless fishes and the absence of endochondral ossification in early fossil gnathostomes appear to lend support to this conclusion. Here we report the discovery of extensive endochondral bone in Minjinia turgenensis, a new genus and species of 'placoderm'-like fish from the Early Devonian (Pragian) of western Mongolia described using X-ray computed microtomography. The fossil consists of a partial skull roof and braincase with anatomical details providing strong evidence of placement in the gnathostome stem group. However, its endochondral space is filled with an extensive network of fine trabeculae resembling the endochondral bone of osteichthyans. Phylogenetic analyses place this new taxon as a proximate sister group of the gnathostome crown. These results provide direct support for theories of generalized bone loss in chondrichthyans. Furthermore, they revive theories of a phylogenetically deeper origin of endochondral bone and its absence in chondrichthyans as a secondary condition.


Fossils , Jaw , Animals , Jaw/anatomy & histology , Mongolia , Phylogeny , Skull/anatomy & histology , Skull/diagnostic imaging
6.
Ecol Evol ; 10(14): 7261-7275, 2020 Jul.
Article En | MEDLINE | ID: mdl-32760527

Multidimensional analysis of traits are now common in ecology and evolution and are based on trait spaces in which each dimension summarizes the observed trait combination (a morphospace or an ecospace). Observations of interest will typically occupy a subset of this space, and researchers will calculate one or more measures to quantify how organisms inhabit that space. In macroevolution and ecology, these measures called disparity or dissimilarity metrics are generalized as space occupancy measures. Researchers use these measures to investigate how space occupancy changes through time, in relation to other groups of organisms, or in response to global environmental changes. However, the mathematical and biological meaning of most space occupancy measures is vague with the majority of widely used measures lacking formal description. Here, we propose a broad classification of space occupancy measures into three categories that capture changes in size, density, or position. We study the behavior of 25 measures to changes in trait space size, density, and position on simulated and empirical datasets. We find that no measure describes all of trait space aspects but that some are better at capturing certain aspects. Our results confirm the three broad categories (size, density, and position) and allow us to relate changes in any of these categories to biological phenomena. Because the choice of space occupancy measures is specific to the data and question, we introduced https://tguillerme.shinyapps.io/moms/moms, a tool to both visualize and capture changes in space occupancy for any measurement. https://tguillerme.shinyapps.io/moms/moms is designed to help workers choose the right space occupancy measures, given the properties of their trait space and their biological question. By providing guidelines and common vocabulary for space occupancy analysis, we hope to help bridging the gap in multidimensional research between ecology and evolution.

7.
Evolution ; 74(10): 2207-2220, 2020 10.
Article En | MEDLINE | ID: mdl-32776526

Studies of biodiversity through deep time have been a staple for biologists and paleontologists for over 60 years. Investigations of species richness (diversity) revealed that at least five mass extinctions punctuated the last half billion years, each seeing the rapid demise of a large proportion of contemporary taxa. In contrast to diversity, the response of morphological diversity (disparity) to mass extinctions is unclear. Generally, diversity and disparity are decoupled, such that diversity may decline as morphological disparity increases, and vice versa. Here, we develop simulations to model disparity changes across mass extinctions using continuous traits and birth-death trees. We find no simple null for disparity change following a mass extinction but do observe general patterns. The range of trait values decreases following either random or trait-selective mass extinctions, whereas variance and the density of morphospace occupation only decline following trait-selective events. General trends may differentiate random and trait-selective mass extinctions, but methods struggle to identify trait selectivity. Long-term effects of mass extinction trait selectivity change support for phylogenetic comparative methods away from the simulated Brownian motion toward Ornstein-Uhlenbeck and Early Burst models. We find that morphological change over mass extinction is best studied by quantifying multiple aspects of morphospace occupation.


Extinction, Biological , Models, Biological , Phylogeny , Computer Simulation
8.
Biol Lett ; 16(7): 20200199, 2020 07.
Article En | MEDLINE | ID: mdl-32603646

Analyses of morphological disparity have been used to characterize and investigate the evolution of variation in the anatomy, function and ecology of organisms since the 1980s. While a diversity of methods have been employed, it is unclear whether they provide equivalent insights. Here, we review the most commonly used approaches for characterizing and analysing morphological disparity, all of which have associated limitations that, if ignored, can lead to misinterpretation. We propose best practice guidelines for disparity analyses, while noting that there can be no 'one-size-fits-all' approach. The available tools should always be used in the context of a specific biological question that will determine data and method selection at every stage of the analysis.


Biological Evolution , Ecology
9.
Front Zool ; 16: 41, 2019.
Article En | MEDLINE | ID: mdl-31695725

BACKGROUND: Within-species skull shape variation of marsupial mammals is widely considered low and strongly size-dependent (allometric), possibly due to developmental constraints arising from the altricial birth of marsupials. However, species whose skulls are impacted by strong muscular stresses - particularly those produced through mastication of tough food items - may not display such intrinsic patterns very clearly because of the known plastic response of bone to muscle activity of the individual. In such cases, allometry may not dominate within-species shape variation, even if it is a driver of evolutionary shape divergence; ordination of shape in a geometric morphometric context through principal component analysis (PCA) should reveal main variation in areas under masticatory stress (incisor region/zygomatic arches/mandibular ramus); but this main variation should emerge from high individual variability and thus have low eigenvalues. RESULTS: We assessed the evidence for high individual variation through 3D geometric morphometric shape analysis of crania and mandibles of three species of grazing-specialized wombats, whose diet of tough grasses puts considerable strain on their masticatory system. As expected, we found little allometry and low Principal Component 1 (PC1) eigenvalues within crania and mandibles of all three species. Also as expected, the main variation was in the muzzle, zygomatic arches, and masticatory muscle attachments of the mandibular ramus. We then implemented a new test to ask if the landmark variation reflected on PC1 was reflected in individuals with opposite PC1 scores and with opposite shapes in Procrustes space. This showed that correspondence between individual and ordinated shape variation was limited, indicating high levels of individual variability in the masticatory apparatus. DISCUSSION: Our results are inconsistent with hypotheses that skull shape variation within marsupial species reflects a constraint pattern. Rather, they support suggestions that individual plasticity can be an important determinant of within-species shape variation in marsupials (and possibly other mammals) with high masticatory stresses, making it difficult to understand the degree to which intrinsic constraints act on shape variation at the within-species level. We conclude that studies that link micro- and macroevolutionary patterns of shape variation might benefit from a focus on species with low-impact mastication, such as carnivorous or frugivorous species.

10.
Syst Biol ; 68(4): 619-631, 2019 07 01.
Article En | MEDLINE | ID: mdl-30535172

Morphological data play a key role in the inference of biological relationships and evolutionary history and are essential for the interpretation of the fossil record. The hierarchical interdependence of many morphological characters, however, complicates phylogenetic analysis. In particular, many characters only apply to a subset of terminal taxa. The widely used "reductive coding" approach treats taxa in which a character is inapplicable as though the character's state is simply missing (unknown). This approach has long been known to create spurious tree length estimates on certain topologies, potentially leading to erroneous results in phylogenetic searches-but pratical solutions have yet to be proposed and implemented. Here, we present a single-character algorithm for reconstructing ancestral states in reductively coded data sets, following the theoretical guideline of minimizing homoplasy over all characters. Our algorithm uses up to three traversals to score a tree, and a fourth to fully resolve final states at each node within the tree. We use explicit criteria to resolve ambiguity in applicable/inapplicable dichotomies, and to optimize missing data. So that it can be applied to single characters, the algorithm employs local optimization; as such, the method provides a fast but approximate inference of ancestral states and tree score. The application of our method to published morphological data sets indicates that, compared to traditional methods, it identifies different trees as "optimal." As such, the use of our algorithm to handle inapplicable data may significantly alter the outcome of tree searches, modifying the inferred placement of living and fossil taxa and potentially leading to major differences in reconstructions of evolutionary history.


Algorithms , Classification/methods , Phylogeny , Fossils
11.
Proc Biol Sci ; 284(1861)2017 Aug 30.
Article En | MEDLINE | ID: mdl-28855367

Historical patterns of diversity, biogeography and faunal turnover remain poorly understood for Wallacea, the biologically and geologically complex island region between the Asian and Australian continental shelves. A distinctive Quaternary vertebrate fauna containing the small-bodied hominin Homo floresiensis, pygmy Stegodon proboscideans, varanids and giant murids has been described from Flores, but Quaternary faunas are poorly known from most other Lesser Sunda Islands. We report the discovery of extensive new fossil vertebrate collections from Pleistocene and Holocene deposits on Sumba, a large Wallacean island situated less than 50 km south of Flores. A fossil assemblage recovered from a Pleistocene deposit at Lewapaku in the interior highlands of Sumba, which may be close to 1 million years old, contains a series of skeletal elements of a very small Stegodon referable to S. sumbaensis, a tooth attributable to Varanus komodoensis, and fragmentary remains of unidentified giant murids. Holocene cave deposits at Mahaniwa dated to approximately 2000-3500 BP yielded extensive material of two new genera of endemic large-bodied murids, as well as fossils of an extinct frugivorous varanid. This new baseline for reconstructing Wallacean faunal histories reveals that Sumba's Quaternary vertebrate fauna, although phylogenetically distinctive, was comparable in diversity and composition to the Quaternary fauna of Flores, suggesting that similar assemblages may have characterized Quaternary terrestrial ecosystems on many or all of the larger Lesser Sunda Islands.


Biological Evolution , Fossils , Vertebrates/classification , Animals , Australia , Hominidae , Indonesia , Islands
12.
Biol Lett ; 12(5)2016 May.
Article En | MEDLINE | ID: mdl-27146442

Analyses of living and fossil taxa are crucial for understanding biodiversity through time. The total evidence method allows living and fossil taxa to be combined in phylogenies, using molecular data for living taxa and morphological data for living and fossil taxa. With this method, substantial overlap of coded anatomical characters among living and fossil taxa is vital for accurately inferring topology. However, although molecular data for living species are widely available, scientists generating morphological data mainly focus on fossils. Therefore, there are fewer coded anatomical characters in living taxa, even in well-studied groups such as mammals. We investigated the number of coded anatomical characters available in phylogenetic matrices for living mammals and how these were phylogenetically distributed across orders. Eleven of 28 mammalian orders have less than 25% species with available characters; this has implications for the accurate placement of fossils, although the issue is less pronounced at higher taxonomic levels. In most orders, species with available characters are randomly distributed across the phylogeny, which may reduce the impact of the problem. We suggest that increased morphological data collection efforts for living taxa are needed to produce accurate total evidence phylogenies.


Mammals/anatomy & histology , Mammals/classification , Phylogeny , Animals , Fossils , Species Specificity
13.
Mol Phylogenet Evol ; 94(Pt A): 146-58, 2016 Jan.
Article En | MEDLINE | ID: mdl-26335040

To fully understand macroevolutionary patterns and processes, we need to include both extant and extinct species in our models. This requires phylogenetic trees with both living and fossil taxa at the tips. One way to infer such phylogenies is the Total Evidence approach which uses molecular data from living taxa and morphological data from living and fossil taxa. Although the Total Evidence approach is very promising, it requires a great deal of data that can be hard to collect. Therefore this method is likely to suffer from missing data issues that may affect its ability to infer correct phylogenies. Here we use simulations to assess the effects of missing data on tree topologies inferred from Total Evidence matrices. We investigate three major factors that directly affect the completeness and the size of the morphological part of the matrix: the proportion of living taxa with no morphological data, the amount of missing data in the fossil record, and the overall number of morphological characters in the matrix. We infer phylogenies from complete matrices and from matrices with various amounts of missing data, and then compare missing data topologies to the "best" tree topology inferred using the complete matrix. We find that the number of living taxa with morphological characters and the overall number of morphological characters in the matrix, are more important than the amount of missing data in the fossil record for recovering the "best" tree topology. Therefore, we suggest that sampling effort should be focused on morphological data collection for living species to increase the accuracy of topological inference in a Total Evidence framework. Additionally, we find that Bayesian methods consistently outperform other tree inference methods. We therefore recommend using Bayesian consensus trees to fix the tree topology prior to further analyses.


Phylogeny , Bayes Theorem , Extinction, Biological , Fossils
14.
Proc Biol Sci ; 281(1784): 20140298, 2014 Jun 07.
Article En | MEDLINE | ID: mdl-24741018

Maximum lifespan in birds and mammals varies strongly with body mass such that large species tend to live longer than smaller species. However, many species live far longer than expected given their body mass. This may reflect interspecific variation in extrinsic mortality, as life-history theory predicts investment in long-term survival is under positive selection when extrinsic mortality is reduced. Here, we investigate how multiple ecological and mode-of-life traits that should reduce extrinsic mortality (including volancy (flight capability), activity period, foraging environment and fossoriality), simultaneously influence lifespan across endotherms. Using novel phylogenetic comparative analyses and to our knowledge, the most species analysed to date (n = 1368), we show that, over and above the effect of body mass, the most important factor enabling longer lifespan is the ability to fly. Within volant species, lifespan depended upon when (day, night, dusk or dawn), but not where (in the air, in trees or on the ground), species are active. However, the opposite was true for non-volant species, where lifespan correlated positively with both arboreality and fossoriality. Our results highlight that when studying the molecular basis behind cellular processes such as those underlying lifespan, it is important to consider the ecological selection pressures that shaped them over evolutionary time.


Birds/physiology , Longevity , Mammals/physiology , Animals , Behavior, Animal , Flight, Animal , Phenotype , Phylogeny , Species Specificity
...