Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Chemistry ; 29(58): e202301961, 2023 Oct 18.
Article En | MEDLINE | ID: mdl-37463071

The prominent role of gold-N-heterocyclic carbene (NHC) complexes in numerous research areas such as homogeneous (photo)catalysis, medicinal chemistry and materials science has prompted organometallic chemists to design gold-based synthons that permit access to target complexes through simple synthetic steps under mild conditions. In this review, the main gold-NHC synthons employed in organometallic synthesis are discussed. Mechanistic aspects involved in their synthesis and reactivity as well as applications of gold-NHC synthons as efficient pre-catalysts, antitumor agents and/or photo-emissive materials are presented.

2.
Org Lett ; 25(9): 1403-1408, 2023 Mar 10.
Article En | MEDLINE | ID: mdl-36847204

The area of energy transfer photocatalysis to generate four-membered rings is experiencing an unprecedented level of activity. Here, we report an operationally simple method toward azetidines from 2-isoxasoline-3-carboxylates and alkenes, using [Au(cbz)(NHC)] complexes as photocatalysts. The procedure enables the reaction for a wide range of substrates. Mechanistic studies confirm the energy transfer pathway. This contribution adds to the earlier reported use of these gold catalysts as a potentially versatile tool in energy transfer chemistry and catalysis.

3.
Chem Sci ; 13(23): 6852-6857, 2022 Jun 15.
Article En | MEDLINE | ID: mdl-35774168

We present the use of gold sensitizers [Au(SIPr)(Cbz)] (PhotAu 1) and [Au(IPr)(Cbz)] (PhotAu 2) as attractive alternatives to state-of-the-art iridium-based systems. These novel photocatalysts are deployed in [2 + 2] cycloadditions of diallyl ethers and N-tosylamides. The reactions proceed in short reaction times and in environmentally friendly solvents. [Au(SIPr)Cbz] and [Au(IPr)(Cbz)] have higher triplet energy (E T) values (66.6 and 66.3 kcal mol-1, respectively) compared to commonly used iridium photosensitizers. These E T values permit the use of these gold complexes as sensitizers enabling energy transfer catalysis involving unprotected indole derivatives, a substrate class previously inaccessible with state-of-the-art Ir photocatalysts. The photosynthesis of unprotected tetracyclic spiroindolines via intramolecular [2 + 2] cycloaddition using our simple mononuclear gold sensitizer is readily achieved. Mechanistic studies support the involvement of triplet-triplet energy transfer (TTEnT) for both [2 + 2] photocycloadditions.

4.
Dalton Trans ; 50(37): 13012-13019, 2021 Sep 28.
Article En | MEDLINE | ID: mdl-34581364

A novel, efficient and facile protocol for the synthesis of a series of [Ru(NHC)(CO3)(p-cymene)] complexes is reported. This family of Ru-NHC complexes was obtained from imidazol(in)ium tetrafluoroborate or imidazolium hydrogen carbonate salts in moderate to excellent yields, employing sustainable weak base. The ruthenium complexes were successfully utilized in the transfer hydrogenation of ketones as highly active multifunctional catalysts.

5.
Dalton Trans ; 50(11): 3959-3965, 2021 Mar 21.
Article En | MEDLINE | ID: mdl-33646238

A simple and efficient synthetic route to [RuCl2(NHC)(p-cymene)] and [Ru(CO3)(NHC)(p-cymene)] complexes making use of a weak base, under aerobic conditions, is reported. This method enables access to a series of NHC-ruthenium compounds with moderate to good yields under mild conditions. The Ru pre-catalysts were successfully used in olefin oxidation catalysis at low catalyst loading and reach complete conversion in short times.

6.
Dalton Trans ; 49(41): 14673-14679, 2020 Oct 27.
Article En | MEDLINE | ID: mdl-33064119

A general, user-friendly synthetic route to [Pt(NHC)(L)Cl2] and [Pt(NHC)(dvtms)] (L = DMS, Py; DMS = dimethyl sulfide, dvtms = divinyltetramethylsiloxane, Py = pyridine) complexes has been developed. The procedure is applicable to a wide range of ligands and enables facile synthetic access to key Pt(0)- and Pt(ii)-NHC complexes used in hydrosilylation catalysis.

7.
Chem Commun (Camb) ; 56(44): 5953-5956, 2020 Jun 02.
Article En | MEDLINE | ID: mdl-32347246

The reaction mechanism leading to the formation of cross-coupling palladium pre-catalysts of the PEPPSI family was investigated. Two intermediates were isolated and proved to be both suitable synthons to the pre-catalysts, with one permitting the design of a novel and greener user-friendly synthetic route. In light of this mechanistic understanding, the traditional one-pot method was shown to be possible using stoichiometric amounts of throw-away ligand, which represents a considerable synthetic improvement over the wasteful "in pyridine" approach.

...