Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JACS Au ; 3(10): 2772-2779, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37885595

RESUMEN

Hydrogels are compelling materials for emerging applications including soft robotics and autonomous sensing. Mechanical stability over an extensive range of environmental conditions and considerations of sustainability, both environmentally benign processing and end-of-life use, are enduring challenges. To make progress on these challenges, we designed a dehydration-hydration approach to transform soft and weak hydrogels into tough and recyclable supramolecular phase-separated gels (PSGs) using water as the only solvent. The dehydration-hydration approach led to phase separation and the formation of domains consisting of strong polymer-polymer interactions that are critical for forming PSGs. The phase-separated segments acted as robust, physical cross-links to strengthen PSGs, which exhibited enhanced toughness and stretchability in its fully swollen state. PSGs are not prone to overswelling or severe shrinkage in wet conditions and show environmental tolerance in harsh conditions, e.g., solutions with pH between 1 and 14. Finally, we demonstrate the use of PSGs as strain sensors in air and aqueous environments.

2.
ACS Cent Sci ; 9(2): 177-185, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36844496

RESUMEN

Hydrogels are promising soft materials for energy and environmental applications, including sustainable and off-grid water purification and harvesting. A current impediment to technology translation is the low water production rate well below daily human demand. To overcome this challenge, we designed a rapid-response, antifouling, loofah-inspired solar absorber gel (LSAG) capable of producing potable water from various contaminated sources at a rate of ∼26 kg m-2 h-1, which is sufficient to meet daily water demand. The LSAG-produced at room temperature via aqueous processing using an ethylene glycol (EG)-water mixture-uniquely integrates the attributes of poly(N-isopropylacrylamide) (PNIPAm), polydopamine (PDA), and poly(sulfobetaine methacrylate) (PSBMA) to enable off-grid water purification with enhanced photothermal response and the capacity to prevent oil fouling and biofouling. The use of the EG-water mixture was critical to forming the loofah-like structure with enhanced water transport. Remarkably, under sunlight irradiations of 1 and 0.5 sun, the LSAG required only 10 and 20 min to release ∼70% of its stored liquid water, respectively. Equally important, we demonstrate the ability of LSAG to purify water from various harmful sources, including those containing small molecules, oils, metals, and microplastics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...