Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protist ; 175(3): 126033, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574508

RESUMEN

Extrachromosomal circular DNA (eccDNA) enhances genomic plasticity, augmenting its coding and regulatory potential. Advances in high-throughput sequencing have enabled the investigation of these structural variants. Although eccDNAs have been investigated in numerous taxa, they remained understudied in euglenids. Therefore, we examined eccDNAs predicted from Illumina sequencing data of Euglena gracilis Z SAG 1224-5/25, grown under optimal photoperiod and exposed to UV irradiation. We identified approximately 1000 unique eccDNA candidates, about 20% of which were shared across conditions. We also observed a significant enrichment of mitochondrially encoded eccDNA in the UV-irradiated sample. Furthermore, we found that the heterogeneity of eccDNA was reduced in UV-exposed samples compared to cells that were grown in optimal conditions. Hence, eccDNA appears to play a role in the response to oxidative stress in Euglena, as it does in other studied organisms. In addition to contributing to the understanding of Euglena genomes, our results contribute to the validation of bioinformatics pipelines on a large, non-model genome.


Asunto(s)
ADN Circular , Euglena gracilis , Euglena gracilis/genética , ADN Circular/genética , ADN Protozoario/genética , Rayos Ultravioleta , Estrés Fisiológico
2.
Sci Adv ; 8(46): eadd9468, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36383655

RESUMEN

Innate immunity is the first line of host defense against pathogens. Here, through global transcriptome and proteome analyses, we uncover that newly described cytoplasmic poly(A) polymerase TENT-5 (terminal nucleotidyltransferase 5) enhances the expression of secreted innate immunity effector proteins in Caenorhabditis elegans. Direct RNA sequencing revealed that multiple mRNAs with signal peptide-encoding sequences have shorter poly(A) tails in tent-5-deficient worms. Those mRNAs are translated at the endoplasmic reticulum where a fraction of TENT-5 is present, implying that they represent its direct substrates. Loss of tent-5 makes worms more susceptible to bacterial infection. Notably, the role of TENT-5 in innate immunity is evolutionarily conserved. Its orthologs, TENT5A and TENT5C, are expressed in macrophages and induced during their activation. Analysis of macrophages devoid of TENT5A/C revealed their role in the regulation of secreted proteins involved in defense response. In summary, our study reveals cytoplasmic polyadenylation to be a previously unknown component of the posttranscriptional regulation of innate immunity in animals.

3.
Postepy Biochem ; 68(2): 129-141, 2022 06 30.
Artículo en Polaco | MEDLINE | ID: mdl-35792646

RESUMEN

In eukaryotic cells, DNA occurs mainly in a linear chromosomes. In addition, it can also take the form of circular molecules. Mitochondrial and chloroplast genomes are the most thoroughly studied circular DNAs. However, the repertoire of circular DNA in Eukarya is much broader. It also includes extrachromosomal circular DNA (eccDNA): circular forms of rDNA, telomeric circles, small polydisperse DNA, microDNA, and other types of eccDNA of nuclear origin. The occurrence of eccDNA has been confirmed in all organisms tested so far. Previous studies have shown that some eccDNAs are present at every stage of the cell cycle, while others appear and/or accumulate under specific circumstances. It has been proven that eccDNA accumulation accompanies severe genome destabilization caused by malignancies or stress conditions. Despite growing interest in eccDNA, they remain a poorly understood component of eukaryotic genomes. Still little is known about the mechanisms of their formation, evolution and biological functions.


Asunto(s)
ADN Circular , Eucariontes , División Celular , Citoplasma , ADN Circular/genética , Eucariontes/genética , Mitocondrias
4.
Sci Adv ; 8(24): eabn2706, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35704590

RESUMEN

The parasite Trypanosoma brucei causes African sleeping sickness that is fatal to patients if untreated. Parasite differentiation from a replicative slender form into a quiescent stumpy form promotes host survival and parasite transmission. Long noncoding RNAs (lncRNAs) are known to regulate cell differentiation in other eukaryotes. To determine whether lncRNAs are also involved in parasite differentiation, we used RNA sequencing to survey the T. brucei genome, identifying 1428 previously uncharacterized lncRNA genes. We find that grumpy lncRNA is a key regulator that promotes parasite differentiation into the quiescent stumpy form. This function is promoted by a small nucleolar RNA encoded within the grumpy lncRNA. snoGRUMPY binds to messenger RNAs of at least two stumpy regulatory genes, promoting their expression. grumpy overexpression reduces parasitemia in infected mice. Our analyses suggest that T. brucei lncRNAs modulate parasite-host interactions and provide a mechanism by which grumpy regulates cell differentiation in trypanosomes.

5.
Environ Microbiol ; 23(6): 2992-3008, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33830624

RESUMEN

Even though the interest in metabarcoding in environmental studies is growing, euglenids are still underrepresented in both sea and freshwater bodies researches. The reason for this situation could be the unsuitability of universal eukaryotic DNA barcodes and primers as well as the lack of a verified protocol, suitable to assess euglenid diversity. In this study, using specific primers for the V2 hypervariable region of 18S rDNA for metabarcoding resulted in obtaining a high fraction (85%) of euglenid reads and species-level identification of almost 90% of them. Fifty species were detected by the metabarcoding method, including almost all species observed using a light microscope. We investigated three biomass harvesting methods (filtering, centrifugation and scraping the side of a collection vessel) and determined that centrifugation and filtration outperformed scrapes, but the choice between them is not crucial for the reliability of the analysis. In addition, eight DNA extraction methods were evaluated. We compared five commercially available DNA isolation kits, two CTAB-based protocols and a chelating resin. For this purpose, the efficiency of extraction, quality of obtained DNA, preparation time and generated costs were taken into consideration. After examination of the aforementioned criteria, we chose the GeneMATRIX Soil DNA Purification Kit as the most suitable for DNA isolation.


Asunto(s)
Euglénidos , Código de Barras del ADN Taxonómico , Cartilla de ADN , ADN Ribosómico/genética , Euglénidos/genética , Reproducibilidad de los Resultados
6.
J Mol Biol ; 433(3): 166758, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33316270

RESUMEN

Nuclear protein-coding genes of euglenids (Discoba, Euglenozoa, Euglenida) contain conventional (spliceosomal) and nonconventional introns. The latter have been found only in euglenozoans. A unique feature of nonconventional introns is the ability to form a stable and slightly conserved RNA secondary structure bringing together intron ends and placing adjacent exons in proximity. To date, little is known about the mechanism of their excision (e.g. whether it involves the spliceosome or not). The tubA gene of Euglena gracilis harbors three conventional and three nonconventional introns. While the conventional introns are excised as lariats, nonconventional introns are present in the cell solely as circular RNAs with full-length ends. Based on this discovery as well as on previous observations indicating that nonconventional introns are observed frequently at unique positions of genes, we suggest that this new type of intronic circRNA might play a role in intron mobility.


Asunto(s)
Euglénidos/genética , Intrones , ARN Circular , ARN Protozoario/genética , Secuencia de Bases , Eucariontes/genética , Empalme del ARN , ARN Protozoario/química , Proteínas de Unión al ARN , Transcripción Genética
7.
Postepy Biochem ; 65(4): 289-298, 2019 Dec 11.
Artículo en Polaco | MEDLINE | ID: mdl-31945283

RESUMEN

Introns are non-coding sequences within the genes. They seemed to be just "junk" DNA, although currently are considered as important genetic elements influencing the genome functions, as they increase the diversity of transcriptome and proteome, perform regulatory activities in the cell, affect gene expression, mRNA processing, degradation and translation. Based on the mechanism of their excision, introns were classified into three main categories: spliceosomal, self-splicing and tRNA introns. Spliceosomal introns are unique for eukaryotic organisms. Sequence analyses of orthologous genes in different groups of eukaryotes revealed many cases of intron gains and losses due to the multiple mechanisms. Some of these events took place in the distant past, while others happened relatively recently. It is believed that these processes can act as one of the forces driving the evolution of eukaryotic genes.


Asunto(s)
Evolución Molecular , Intrones/genética , Empalme del ARN/genética , Empalmosomas/metabolismo , Genoma/genética
8.
PLoS Genet ; 14(10): e1007761, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30365503

RESUMEN

Nuclear genes of euglenids and marine diplonemids harbor atypical, nonconventional introns which are not observed in the genomes of other eukaryotes. Nonconventional introns do not have the conserved borders characteristic for spliceosomal introns or the sequence complementary to U1 snRNA at the 5' end. They form a stable secondary structure bringing together both exon/intron junctions, nevertheless, this conformation does not resemble the form of self-splicing or tRNA introns. In the genes studied so far, frequent nonconventional introns insertions at new positions have been observed, whereas conventional introns have been either found at the conserved positions, or simply lost. In this work, we examined the order of intron removal from Euglena gracilis transcripts of the tubA and gapC genes, which contain two types of introns: nonconventional and spliceosomal. The relative order of intron excision was compared for pairs of introns belonging to different types. Furthermore, intermediate products of splicing were analyzed using the PacBio Next Generation Sequencing system. The analysis led to the main conclusion that nonconventional introns are removed in a rapid way but later than spliceosomal introns. Moreover, the observed accumulation of transcripts with conventional introns removed and nonconventional present may suggest the existence of a time gap between the two types of splicing.


Asunto(s)
Euglena gracilis/genética , Intrones/genética , Intrones/fisiología , Secuencia de Bases , Secuencia Conservada , Exones/fisiología , Conformación de Ácido Nucleico , Filogenia , Empalme del ARN/genética , Empalme del ARN/fisiología , ARN Mensajero/genética , ARN Nuclear Pequeño/fisiología , Análisis de Secuencia de ARN , Empalmosomas/genética
9.
BMC Evol Biol ; 16: 49, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26923034

RESUMEN

BACKGROUND: Nuclear genes of euglenids contain two major types of introns: conventional spliceosomal and nonconventional introns. The latter are characterized by variable non-canonical borders, RNA secondary structure that brings intron ends together, and an unknown mechanism of removal. Some researchers also distinguish intermediate introns, which combine features of both types. They form a stable RNA secondary structure and are classified into two subtypes depending on whether they contain one (intermediate/nonconventional subtype) or both (conventional/intermediate subtype) canonical spliceosomal borders. However, it has been also postulated that most introns classified as intermediate could simply be special cases of conventional or nonconventional introns. RESULTS: Sequences of tubB, hsp90 and gapC genes from six strains of Euglena agilis were obtained. They contain four, six, and two or three introns, respectively (the third intron in the gapC gene is unique for just one strain). Conventional introns were present at three positions: two in the tubB gene (at one position conventional/intermediate introns were also found) and one in the gapC gene. Nonconventional introns are present at ten positions: two in the tubB gene (at one position intermediate/nonconventional introns were also found), six in hsp90 (at four positions intermediate/nonconventional introns were also found), and two in the gapC gene. CONCLUSIONS: Sequence and RNA secondary structure analyses of nonconventional introns confirmed that their most strongly conserved elements are base pairing nucleotides at positions +4, +5 and +6/ -8, -7 and -6 (in most introns CAG/CTG nucleotides were observed). It was also confirmed that the presence of the 5' GT/C end in intermediate/nonconventional introns is not the result of kinship with conventional introns, but is due to evolutionary pressure to preserve the purine at the 5' end. However, an example of a nonconventional intron with GC-AG ends was shown, suggesting the possibility of intron type conversion between nonconventional and conventional. Furthermore, an analysis of conventional introns revealed that the ability to form a stable RNA secondary structure by some introns is probably not a result of their relationship with nonconventional introns. It was also shown that acquisition of new nonconventional introns is an ongoing process and can be observed at the level of a single species. In the recently acquired intron in the gapC gene an extended direct repeats at the intron-exon junctions are present, suggesting that double-strand break repair process could be the source of new nonconventional introns.


Asunto(s)
Euglénidos/genética , Genes Protozoarios , Intrones , Emparejamiento Base , Secuencia de Bases , Exones , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Conformación de Ácido Nucleico , Nucleótidos/genética , Análisis de Secuencia de ADN , Empalmosomas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA