Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1915, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069152

RESUMEN

Under-utilised orphan crops hold the key to diversified and climate-resilient food systems. Here, we report on orphan crop genomics using the case of Lablab purpureus (L.) Sweet (lablab) - a legume native to Africa and cultivated throughout the tropics for food and forage. Our Africa-led plant genome collaboration produces a high-quality chromosome-scale assembly of the lablab genome. Our assembly highlights the genome organisation of the trypsin inhibitor genes - an important anti-nutritional factor in lablab. We also re-sequence cultivated and wild lablab accessions from Africa confirming two domestication events. Finally, we examine the genetic and phenotypic diversity in a comprehensive lablab germplasm collection and identify genomic loci underlying variation of important agronomic traits in lablab. The genomic data generated here provide a valuable resource for lablab improvement. Our inclusive collaborative approach also presents an example that can be explored by other researchers sequencing indigenous crops, particularly from low and middle-income countries (LMIC).


Asunto(s)
Fabaceae , Metagenómica , Fitomejoramiento , Productos Agrícolas/genética , Genoma de Planta/genética , Fabaceae/genética , Cromosomas
2.
Nature ; 615(7953): 652-659, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890232

RESUMEN

Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity1. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value2. Faba bean (Vicia faba L.) has a high yield potential and is well suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has expanded to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, although with substantial copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association analysis to dissect the genetic basis of seed size and hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate the improvement of sustainable protein production across the Mediterranean, subtropical and northern temperate agroecological zones.


Asunto(s)
Productos Agrícolas , Diploidia , Variación Genética , Genoma de Planta , Genómica , Fitomejoramiento , Proteínas de Plantas , Vicia faba , Cromosomas de las Plantas/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Variaciones en el Número de Copia de ADN/genética , ADN Satélite/genética , Amplificación de Genes/genética , Genes de Plantas/genética , Variación Genética/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Geografía , Fitomejoramiento/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Recombinación Genética , Retroelementos/genética , Semillas/anatomía & histología , Semillas/genética , Vicia faba/anatomía & histología , Vicia faba/genética , Vicia faba/metabolismo
3.
Plant Physiol ; 190(2): 1242-1259, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35861439

RESUMEN

Parasitism is a successful life strategy that has evolved independently in several families of vascular plants. The genera Cuscuta and Orobanche represent examples of the two profoundly different groups of parasites: one parasitizing host shoots and the other infecting host roots. In this study, we sequenced and described the overall repertoire of small RNAs from Cuscuta campestris and Orobanche aegyptiaca. We showed that C. campestris contains a number of novel microRNAs (miRNAs) in addition to a conspicuous retention of miRNAs that are typically lacking in other Solanales, while several typically conserved miRNAs seem to have become obsolete in the parasite. One new miRNA appears to be derived from a horizontal gene transfer event. The exploratory analysis of the miRNA population (exploratory due to the absence of a full genomic sequence for reference) from the root parasitic O. aegyptiaca also revealed a loss of a number of miRNAs compared to photosynthetic species from the same order. In summary, our study shows partly similar evolutionary signatures in the RNA silencing machinery in both parasites. Our data bear proof for the dynamism of this regulatory mechanism in parasitic plants.


Asunto(s)
Cuscuta , MicroARNs , Orobanche , Parásitos , Animales , Cuscuta/genética , MicroARNs/genética , Orobanche/genética , ARN de Planta/genética
4.
Nature ; 606(7912): 113-119, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35585233

RESUMEN

Cultivated oat (Avena sativa L.) is an allohexaploid (AACCDD, 2n = 6x = 42) thought to have been domesticated more than 3,000 years ago while growing as a weed in wheat, emmer and barley fields in Anatolia1,2. Oat has a low carbon footprint, substantial health benefits and the potential to replace animal-based food products. However, the lack of a fully annotated reference genome has hampered efforts to deconvolute its complex evolutionary history and functional gene dynamics. Here we present a high-quality reference genome of A. sativa and close relatives of its diploid (Avena longiglumis, AA, 2n = 14) and tetraploid (Avena insularis, CCDD, 2n = 4x = 28) progenitors. We reveal the mosaic structure of the oat genome, trace large-scale genomic reorganizations in the polyploidization history of oat and illustrate a breeding barrier associated with the genome architecture of oat. We showcase detailed analyses of gene families implicated in human health and nutrition, which adds to the evidence supporting oat safety in gluten-free diets, and we perform mapping-by-sequencing of an agronomic trait related to water-use efficiency. This resource for the Avena genus will help to leverage knowledge from other cereal genomes, improve understanding of basic oat biology and accelerate genomics-assisted breeding and reanalysis of quantitative trait studies.


Asunto(s)
Avena , Grano Comestible , Genoma de Planta , Avena/genética , Diploidia , Grano Comestible/genética , Genoma de Planta/genética , Mosaicismo , Fitomejoramiento , Tetraploidía
5.
Plant J ; 110(1): 179-192, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34997796

RESUMEN

Aegilops is a close relative of wheat (Triticum spp.), and Aegilops species in the section Sitopsis represent a rich reservoir of genetic diversity for the improvement of wheat. To understand their diversity and advance their utilization, we produced whole-genome assemblies of Aegilops longissima and Aegilops speltoides. Whole-genome comparative analysis, along with the recently sequenced Aegilops sharonensis genome, showed that the Ae. longissima and Ae. sharonensis genomes are highly similar and are most closely related to the wheat D subgenome. By contrast, the Ae. speltoides genome is more closely related to the B subgenome. Haplotype block analysis supported the idea that Ae. speltoides genome is closest to the wheat B subgenome, and highlighted variable and similar genomic regions between the three Aegilops species and wheat. Genome-wide analysis of nucleotide-binding leucine-rich repeat (NLR) genes revealed species-specific and lineage-specific NLR genes and variants, demonstrating the potential of Aegilops genomes for wheat improvement.


Asunto(s)
Aegilops , Aegilops/genética , Genoma de Planta/genética , Filogenia , Poaceae/genética , Triticum/genética
6.
Methods Mol Biol ; 2443: 147-159, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35037204

RESUMEN

To unlock the genetic potential in crops, multi-genome comparisons are an essential tool. Decreasing costs and improved sequencing technologies have democratized plant genome sequencing and led to a vast increase in the amount of available reference sequences on the one hand and enabled the assembly of even the largest and most complex and repetitive crops genomes such as wheat and barley. These developments have led to the era of pan-genomics in recent years. Pan-genome projects enable the definition of the core and dispensable genome for various crop species as well as the analysis of structural and functional variation and hence offer unprecedented opportunities for exploring and utilizing the genetic basis of natural variation in crops. Comparing, analyzing, and visualizing these multiple reference genomes and their diversity requires powerful and specialized computational strategies and tools.


Asunto(s)
Hordeum , Productos Agrícolas/genética , Genoma de Planta , Genómica , Hordeum/genética , Triticum/genética
7.
Adv Genet (Hoboken) ; 3(1): 2100022, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36619351

RESUMEN

Wheat has one of the largest and most repetitive genomes among major crop plants, containing over 85% transposable elements (TEs). TEs populate genomes much in the way that individuals populate ecosystems, diversifying into different lineages, sub-families and sub-populations. The recent availability of high-quality, chromosome-scale genome sequences from ten wheat lines enables a detailed analysis how TEs evolved in allohexaploid wheat, its diploids progenitors, and in various chromosomal haplotype segments. LTR retrotransposon families evolved into distinct sub-populations and sub-families that were active in waves lasting several hundred thousand years. Furthermore, It is shown that different retrotransposon sub-families were active in the three wheat sub-genomes, making them useful markers to study and date polyploidization events and chromosomal rearrangements. Additionally, haplotype-specific TE sub-families are used to characterize chromosomal introgressions in different wheat lines. Additionally, populations of non-autonomous TEs co-evolved over millions of years with their autonomous partners, leading to complex systems with multiple types of autonomous, semi-autonomous and non-autonomous elements. Phylogenetic and TE population analyses revealed the relationships between non-autonomous elements and their mobilizing autonomous partners. TE population analysis provided insights into genome evolution of allohexaploid wheat and genetic diversity of species, and may have implication for future crop breeding.

8.
DNA Res ; 28(3)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34254113

RESUMEN

We have established a high-quality, chromosome-level genome assembly for the hexaploid common wheat cultivar 'Fielder', an American, soft, white, pastry-type wheat released in 1974 and known for its amenability to Agrobacterium tumefaciens-mediated transformation and genome editing. Accurate, long-read sequences were obtained using PacBio circular consensus sequencing with the HiFi approach. Sequence reads from 16 SMRT cells assembled using the hifiasm assembler produced assemblies with N50 greater than 20 Mb. We used the Omni-C chromosome conformation capture technique to order contigs into chromosome-level assemblies, resulting in 21 pseudomolecules with a cumulative size of 14.7 and 0.3 Gb of unanchored contigs. Mapping of published short reads from a transgenic wheat plant with an edited seed-dormancy gene, TaQsd1, identified four positions of transgene insertion into wheat chromosomes. Detection of guide RNA sequences in pseudomolecules provided candidates for off-target mutation induction. These results demonstrate the efficiency of chromosome-scale assembly using PacBio HiFi reads and their application in wheat genome-editing studies.


Asunto(s)
Edición Génica , Genoma de Planta , Triticum/genética , Agrobacterium tumefaciens/metabolismo , Cromosomas de las Plantas , ADN de Plantas/metabolismo , Análisis de Secuencia de ADN , Triticum/microbiología
9.
Plant Cell ; 33(6): 1888-1906, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-33710295

RESUMEN

Sequence assembly of large and repeat-rich plant genomes has been challenging, requiring substantial computational resources and often several complementary sequence assembly and genome mapping approaches. The recent development of fast and accurate long-read sequencing by circular consensus sequencing (CCS) on the PacBio platform may greatly increase the scope of plant pan-genome projects. Here, we compare current long-read sequencing platforms regarding their ability to rapidly generate contiguous sequence assemblies in pan-genome studies of barley (Hordeum vulgare). Most long-read assemblies are clearly superior to the current barley reference sequence based on short-reads. Assemblies derived from accurate long reads excel in most metrics, but the CCS approach was the most cost-effective strategy for assembling tens of barley genomes. A downsampling analysis indicated that 20-fold CCS coverage can yield very good sequence assemblies, while even five-fold CCS data may capture the complete sequence of most genes. We present an updated reference genome assembly for barley with near-complete representation of the repeat-rich intergenic space. Long-read assembly can underpin the construction of accurate and complete sequences of multiple genomes of a species to build pan-genome infrastructures in Triticeae crops and their wild relatives.


Asunto(s)
Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hordeum/genética , Biología Computacional/métodos , ADN Intergénico , Genoma de Planta , Anotación de Secuencia Molecular , Retroelementos , Análisis de Secuencia de ADN , Secuencias Repetidas Terminales
10.
Nat Genet ; 53(4): 564-573, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33737754

RESUMEN

Rye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool. To further enhance the agronomic potential of rye, we produced a chromosome-scale annotated assembly of the 7.9-gigabase rye genome and extensively validated its quality by using a suite of molecular genetic resources. We demonstrate applications of this resource with a broad range of investigations. We present findings on cultivated rye's incomplete genetic isolation from wild relatives, mechanisms of genome structural evolution, pathogen resistance, low-temperature tolerance, fertility control systems for hybrid breeding and the yield benefits of rye-wheat introgressions.


Asunto(s)
Mapeo Cromosómico/métodos , Genoma de Planta , Fitomejoramiento/métodos , Proteínas de Plantas/genética , Secale/genética , Triticum/genética , Adaptación Fisiológica/genética , Productos Agrícolas/genética , Productos Agrícolas/inmunología , Regulación de la Expresión Génica de las Plantas , Introgresión Genética , Cariotipo , Inmunidad de la Planta/genética , Proteínas de Plantas/metabolismo , Secale/inmunología , Estrés Fisiológico
11.
Nature ; 588(7837): 284-289, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33239781

RESUMEN

Genetic diversity is key to crop improvement. Owing to pervasive genomic structural variation, a single reference genome assembly cannot capture the full complement of sequence diversity of a crop species (known as the 'pan-genome'1). Multiple high-quality sequence assemblies are an indispensable component of a pan-genome infrastructure. Barley (Hordeum vulgare L.) is an important cereal crop with a long history of cultivation that is adapted to a wide range of agro-climatic conditions2. Here we report the construction of chromosome-scale sequence assemblies for the genotypes of 20 varieties of barley-comprising landraces, cultivars and a wild barley-that were selected as representatives of global barley diversity. We catalogued genomic presence/absence variants and explored the use of structural variants for quantitative genetic analysis through whole-genome shotgun sequencing of 300 gene bank accessions. We discovered abundant large inversion polymorphisms and analysed in detail two inversions that are frequently found in current elite barley germplasm; one is probably the product of mutation breeding and the other is tightly linked to a locus that is involved in the expansion of geographical range. This first-generation barley pan-genome makes previously hidden genetic variation accessible to genetic studies and breeding.


Asunto(s)
Cromosomas de las Plantas/genética , Genoma de Planta/genética , Hordeum/genética , Internacionalidad , Mutación , Fitomejoramiento , Inversión Cromosómica/genética , Mapeo Cromosómico , Sitios Genéticos/genética , Genotipo , Hordeum/clasificación , Polimorfismo Genético/genética , Estándares de Referencia , Banco de Semillas , Inversión de Secuencia , Secuenciación Completa del Genoma
12.
Nature ; 588(7837): 277-283, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33239791

RESUMEN

Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome1, and the lack of genome-assembly data for multiple wheat lines2,3. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses4,5. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm16, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars.


Asunto(s)
Variación Genética , Genoma de Planta/genética , Genómica , Internacionalidad , Fitomejoramiento/métodos , Triticum/genética , Aclimatación/genética , Animales , Centrómero/genética , Centrómero/metabolismo , Mapeo Cromosómico , Clonación Molecular , Variaciones en el Número de Copia de ADN/genética , Elementos Transponibles de ADN/genética , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Genes de Plantas/genética , Introgresión Genética , Haplotipos , Insectos/patogenicidad , Proteínas NLR/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple/genética , Poliploidía , Triticum/clasificación , Triticum/crecimiento & desarrollo
13.
Nat Genet ; 52(9): 950-957, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32719517

RESUMEN

The diversity of maize (Zea mays) is the backbone of modern heterotic patterns and hybrid breeding. Historically, US farmers exploited this variability to establish today's highly productive Corn Belt inbred lines from blends of dent and flint germplasm pools. Here, we report de novo genome sequences of four European flint lines assembled to pseudomolecules with scaffold N50 ranging from 6.1 to 10.4 Mb. Comparative analyses with two US Corn Belt lines explains the pronounced differences between both germplasms. While overall syntenic order and consolidated gene annotations reveal only moderate pangenomic differences, whole-genome alignments delineating the core and dispensable genome, and the analysis of heterochromatic knobs and orthologous long terminal repeat retrotransposons unveil the dynamics of the maize genome. The high-quality genome sequences of the flint pool complement the maize pangenome and provide an important tool to study maize improvement at a genome scale and to enhance modern hybrid breeding.


Asunto(s)
Variación Genética/genética , Genoma de Planta/genética , Zea mays/genética , Cruzamiento/métodos , Mapeo Cromosómico , Genotipo , Vigor Híbrido/genética , Fenotipo
14.
Genome Biol ; 20(1): 284, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31849336

RESUMEN

Chromosome-scale genome sequence assemblies underpin pan-genomic studies. Recent genome assembly efforts in the large-genome Triticeae crops wheat and barley have relied on the commercial closed-source assembly algorithm DeNovoMagic. We present TRITEX, an open-source computational workflow that combines paired-end, mate-pair, 10X Genomics linked-read with chromosome conformation capture sequencing data to construct sequence scaffolds with megabase-scale contiguity ordered into chromosomal pseudomolecules. We evaluate the performance of TRITEX on publicly available sequence data of tetraploid wild emmer and hexaploid bread wheat, and construct an improved annotated reference genome sequence assembly of the barley cultivar Morex as a community resource.


Asunto(s)
Cromosomas de las Plantas , Técnicas Genéticas , Genoma de Planta , Hordeum/genética , Triticum/genética , Programas Informáticos
15.
Curr Biol ; 29(18): 3041-3052.e4, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31522940

RESUMEN

Parasitic plants in the genus Striga, commonly known as witchweeds, cause major crop losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An understanding of Striga parasite biology, which could lead to agricultural solutions, has been hampered by the lack of genome information. Here, we report the draft genome sequence of Striga asiatica with 34,577 predicted protein-coding genes, which reflects gene family contractions and expansions that are consistent with a three-phase model of parasitic plant genome evolution. Striga seeds germinate in response to host-derived strigolactones (SLs) and then develop a specialized penetration structure, the haustorium, to invade the host root. A family of SL receptors has undergone a striking expansion, suggesting a molecular basis for the evolution of broad host range among Striga spp. We found that genes involved in lateral root development in non-parasitic model species are coordinately induced during haustorium development in Striga, suggesting a pathway that was partly co-opted during the evolution of the haustorium. In addition, we found evidence for horizontal transfer of host genes as well as retrotransposons, indicating gene flow to S. asiatica from hosts. Our results provide valuable insights into the evolution of parasitism and a key resource for the future development of Striga control strategies.


Asunto(s)
Interacciones Huésped-Parásitos/genética , Striga/genética , Animales , Evolución Biológica , Evolución Molecular , Transferencia de Gen Horizontal/genética , Germinación , Orobanchaceae/genética , Parásitos/genética , Parásitos/metabolismo , Raíces de Plantas , Semillas , Simbiosis
16.
Nat Genet ; 51(5): 885-895, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962619

RESUMEN

The domestication of wild emmer wheat led to the selection of modern durum wheat, grown mainly for pasta production. We describe the 10.45 gigabase (Gb) assembly of the genome of durum wheat cultivar Svevo. The assembly enabled genome-wide genetic diversity analyses revealing the changes imposed by thousands of years of empirical selection and breeding. Regions exhibiting strong signatures of genetic divergence associated with domestication and breeding were widespread in the genome with several major diversity losses in the pericentromeric regions. A locus on chromosome 5B carries a gene encoding a metal transporter (TdHMA3-B1) with a non-functional variant causing high accumulation of cadmium in grain. The high-cadmium allele, widespread among durum cultivars but undetected in wild emmer accessions, increased in frequency from domesticated emmer to modern durum wheat. The rapid cloning of TdHMA3-B1 rescues a wild beneficial allele and demonstrates the practical use of the Svevo genome for wheat improvement.


Asunto(s)
Triticum/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Cadmio/metabolismo , Cromosomas de las Plantas/genética , Domesticación , Variación Genética , Genoma de Planta , Filogenia , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Selección Genética , Sintenía , Tetraploidía , Triticum/clasificación , Triticum/metabolismo
17.
Plant J ; 97(1): 182-198, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30500991

RESUMEN

Recent advances in genomics technologies have greatly accelerated the progress in both fundamental plant science and applied breeding research. Concurrently, high-throughput plant phenotyping is becoming widely adopted in the plant community, promising to alleviate the phenotypic bottleneck. While these technological breakthroughs are significantly accelerating quantitative trait locus (QTL) and causal gene identification, challenges to enable even more sophisticated analyses remain. In particular, care needs to be taken to standardize, describe and conduct experiments robustly while relying on plant physiology expertise. In this article, we review the state of the art regarding genome assembly and the future potential of pangenomics in plant research. We also describe the necessity of standardizing and describing phenotypic studies using the Minimum Information About a Plant Phenotyping Experiment (MIAPPE) standard to enable the reuse and integration of phenotypic data. In addition, we show how deep phenotypic data might yield novel trait-trait correlations and review how to link phenotypic data to genomic data. Finally, we provide perspectives on the golden future of machine learning and their potential in linking phenotypes to genomic features.


Asunto(s)
Estudios de Asociación Genética , Genoma de Planta/genética , Genómica , Aprendizaje Automático , Fenómica , Plantas/genética , Fenotipo , Sitios de Carácter Cuantitativo/genética
18.
Genome Biol ; 19(1): 103, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30115100

RESUMEN

BACKGROUND: Transposable elements (TEs) are major components of large plant genomes and main drivers of genome evolution. The most recent assembly of hexaploid bread wheat recovered the highly repetitive TE space in an almost complete chromosomal context and enabled a detailed view into the dynamics of TEs in the A, B, and D subgenomes. RESULTS: The overall TE content is very similar between the A, B, and D subgenomes, although we find no evidence for bursts of TE amplification after the polyploidization events. Despite the near-complete turnover of TEs since the subgenome lineages diverged from a common ancestor, 76% of TE families are still present in similar proportions in each subgenome. Moreover, spacing between syntenic genes is also conserved, even though syntenic TEs have been replaced by new insertions over time, suggesting that distances between genes, but not sequences, are under evolutionary constraints. The TE composition of the immediate gene vicinity differs from the core intergenic regions. We find the same TE families to be enriched or depleted near genes in all three subgenomes. Evaluations at the subfamily level of timed long terminal repeat-retrotransposon insertions highlight the independent evolution of the diploid A, B, and D lineages before polyploidization and cases of concerted proliferation in the AB tetraploid. CONCLUSIONS: Even though the intergenic space is changed by the TE turnover, an unexpected preservation is observed between the A, B, and D subgenomes for features like TE family proportions, gene spacing, and TE enrichment near genes.


Asunto(s)
Elementos Transponibles de ADN/genética , Evolución Molecular , Genoma de Planta , Triticum/genética , Secuencia de Bases , Pan , Cromosomas de las Plantas/genética , ADN Intergénico/genética , Diploidia , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mutagénesis Insercional/genética , Regiones Promotoras Genéticas/genética , Secuencias Repetidas Terminales/genética , Tetraploidía
19.
Nat Commun ; 9(1): 2515, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29955043

RESUMEN

A parasitic lifestyle, where plants procure some or all of their nutrients from other living plants, has evolved independently in many dicotyledonous plant families and is a major threat for agriculture globally. Nevertheless, no genome sequence of a parasitic plant has been reported to date. Here we describe the genome sequence of the parasitic field dodder, Cuscuta campestris. The genome contains signatures of a fairly recent whole-genome duplication and lacks genes for pathways superfluous to a parasitic lifestyle. Specifically, genes needed for high photosynthetic activity are lost, explaining the low photosynthesis rates displayed by the parasite. Moreover, several genes involved in nutrient uptake processes from the soil are lost. On the other hand, evidence for horizontal gene transfer by way of genomic DNA integration from the parasite's hosts is found. We conclude that the parasitic lifestyle has left characteristic footprints in the C. campestris genome.


Asunto(s)
Cuscuta/genética , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Interacciones Huésped-Parásitos , Proteínas de Plantas/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cuscuta/clasificación , Eliminación de Gen , Ontología de Genes , Cariotipo , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Pelargonium/parasitología , Fotosíntesis/genética , Filogenia , Proteínas de Plantas/metabolismo
20.
Plant J ; 93(3): 502-514, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29205595

RESUMEN

Pseudogenes have a reputation of being 'evolutionary relics' or 'junk DNA'. While they are well characterized in mammals, studies in more complex plant genomes have so far been hampered by the absence of reference genome sequences. Barley is one of the economically most important cereals and has a genome size of 5.1 Gb. With the first high-quality genome reference assembly available for a Triticeae crop, we conducted a whole-genome assessment of pseudogenes on the barley genome. We identified, characterized and classified 89 440 gene fragments and pseudogenes scattered along the chromosomes, with occasional hotspots and higher densities at the chromosome ends. Full-length pseudogenes (11 015) have preferentially retained their exon-intron structure. Retrotransposition of processed mRNAs only plays a marginal role in their creation. However, the distribution of retroposed pseudogenes reflects the Rabl configuration of barley chromosomes and thus hints at founding mechanisms. While parent genes related to the defense-response were found to be under-represented in cultivated barley, we detected several defense-related pseudogenes in wild barley accessions. The percentage of transcriptionally active pseudogenes is 7.2%, and these may potentially adopt new regulatory roles.The barley genome is rich in pseudogenes and small gene fragments mainly located towards chromosome tips or as tandemly repeated units. Our results indicate non-random duplication and pseudogenization preferences and improve our understanding of the dynamics of gene birth and death in large plant genomes and the mechanisms that lead to evolutionary innovations.


Asunto(s)
Genes de Plantas , Hordeum/genética , Seudogenes , Mapeo Cromosómico , Cromosomas de las Plantas , Duplicación de Gen , Familia de Multigenes , Selección Genética , Sintenía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...