Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Endocr Relat Cancer ; 30(12)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37800655

RESUMEN

Intratumoral androgen biosynthesis contributes to castration-resistant prostate cancer progression in patients treated with androgen deprivation therapy. The molecular mechanisms by which castration-resistant prostate cancer acquires the capacity for androgen biosynthesis to bypass androgen deprivation therapy are not entirely known. Here, we show that semaphorin 3C, a secreted signaling protein that is highly expressed in castration-resistant prostate cancer, can promote steroidogenesis by altering the expression profile of key steroidogenic enzymes. Semaphorin 3C not only upregulates enzymes required for androgen synthesis from dehydroepiandrosterone or de novo from cholesterol but also simultaneously downregulates enzymes involved in the androgen inactivation pathway. These changes in gene expression correlate with increased production of androgens induced by semaphorin 3C in prostate cancer model cells. Moreover, semaphorin 3C upregulates androgen synthesis in LNCaP cell-derived xenograft tumors, likely contributing to the enhanced in vivo tumor growth rate post castration. Furthermore, semaphorin 3C activates sterol regulatory element-binding protein, a transcription factor that upregulates enzymes involved in the synthesis of cholesterol, a sole precursor for de novo steroidogenesis. The ability of semaphorin 3C to promote intratumoral androgen synthesis may be a key mechanism contributing to the reactivation of the androgen receptor pathway in castration-resistant prostate cancer, conferring continued growth under androgen deprivation therapy. These findings identify semaphorin 3C as a potential therapeutic target for suppressing intratumoral steroidogenesis.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Semaforinas , Masculino , Humanos , Andrógenos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Antagonistas de Andrógenos , Receptores Androgénicos/metabolismo , Colesterol/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
2.
Cancer Chemother Pharmacol ; 92(6): 419-437, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37709921

RESUMEN

Ginsenoside Rh2 and its aglycon (aPPD) are one of the major metabolites from Panax ginseng. Preclinical studies suggest that Rh2 and aPPD have antitumor effects in prostate cancer (PCa). Our aims in this review are (1) to describe the pharmacokinetic (PK) properties of Rh2 and aPPD ginsenosides; 2) to provide an overview of the preclinical findings on the use of Rh2 and aPPD in the treatment of PCa; and (3) to highlight the mechanisms of its PK and pharmacodynamic (PD) drug interactions. Increasing evidence points to the potential efficacy of Rh2 or aPPD for PCa treatment. Based on the laboratory studies, Rh2 or aPPD combinations revealed an additive or synergistic interaction or enhanced sensitivity of anticancer drugs toward PCa. This review reveals that enhanced anticancer activities were demonstrated in preclinical studies through interactions of Rh2 and/or aPPD with the proteins related to PK (e.g., cytochrome P450 enzymes, transporters) or PD of the other anticancer drugs or PCa signaling pathways. In conclusion, combining Rh2 or aPPD with anti-prostate cancer drugs leads to PK or PD interactions which could facilitate either therapeutically beneficial or toxic effects.


Asunto(s)
Antineoplásicos , Ginsenósidos , Neoplasias de la Próstata , Sapogeninas , Masculino , Humanos , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Sapogeninas/farmacocinética , Sapogeninas/uso terapéutico , Interacciones Farmacológicas , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
3.
Medicines (Basel) ; 10(3)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36976310

RESUMEN

Background: Abiraterone acetate is a cytochrome P450 17A1 (CYP17A1) inhibitor that is indicated for use in both castration-resistant and castration-sensitive prostate cancer patients. To manage the mineralocorticoid effects of CYP17A1 inhibition, a glucocorticoid such as dexamethasone is co-administered with abiraterone. The goal of the present study was to understand the effect of dexamethasone on the disposition of abiraterone. Methods: Adult male CD-1 mice were treated with either dexamethasone (80 mg/kg/day) or vehicle for three consecutive days, followed by the administration of a single dose of abiraterone acetate (180 mg/kg) as an oral gavage. Blood samples were collected by tail bleeding at timepoints between 0 to 24 h. Subsequently, abiraterone was extracted from the mouse serum using a neutral pH condition and serum abiraterone levels were determined using a liquid chromatography-mass spectrometry assay. Results: Our results demonstrated that dexamethasone lowered the maximum plasma concentration and area under the curve parameters by approximately five- and ten-fold, respectively. Similar effects were also observed on the plasma half-life and oral clearance parameters. This is the first report of dexamethasone effect on abiraterone disposition in vivo. Conclusions: We conclude that dexamethasone has the potential to reduce the plasma abiraterone level and thus compromise its CYP17A1 inhibitory ability in the procancerous androgen biosynthesis pathway. Thus, use of a higher abiraterone dose may be warranted when used alongside dexamethasone.

4.
J Cancer Res Clin Oncol ; 149(8): 4701-4717, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36222898

RESUMEN

PURPOSE: Extracellular vesicles (EV) secreted from cancer cells are present in various biological fluids, carrying distinctly different cellular components compared to normal cells, and have great potential to be used as markers for disease initiation, progression, and response to treatment. This under-utilised tool provides insights into a better understanding of prostate cancer. METHODS: EV from serum and urine of healthy men and castration-resistant prostate cancer (CRPC) patients were isolated and characterised by transmission electron microscopy, particle size analysis, and western blot. Proteomic and cholesterol liquid chromatography-mass spectrometry (LC-MS) analyses were conducted. RESULTS: There was a successful enrichment of small EV/exosomes isolated from serum and urine. EV derived from biological fluids of CRPC patients had significant differences in composition when compared with those from healthy controls. Analysis of matched serum and urine samples from six prostate cancer patients revealed specific EV proteins common in both types of biological fluid for each patient. CONCLUSION: Some of the EV proteins identified from our analyses have potential to be used as CRPC markers. These markers may depict a pattern in cancer progression through non-invasive sample collection.


Asunto(s)
Líquidos Corporales , Exosomas , Vesículas Extracelulares , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Proteómica , Vesículas Extracelulares/metabolismo
5.
Medicines (Basel) ; 8(6)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199743

RESUMEN

In spite of possessing desirable anticancer properties, currently, limited clinical success has been achieved with 20(S)-protopanaxadiol (aPPD) and 1,25-dihydroxyvitamin D3 (calcitriol). This study is designed to evaluate if the combination of aPPD with calcitriol can inhibit human prostate cancer xenograft growth by using nuclear receptor signaling. Athymic male nude mice were utilized to establish an androgen-independent human prostate cancer C4-2 cell castration-resistant prostate cancer (CRPC) xenograft model. Mice were treated orally for six weeks with 70 mg/kg aPPD administered once daily or three times per week with 4 µg/kg calcitriol or in combination or only with vehicle control. Contrary to our expectations, calcitriol treatment alone increased C4-2 tumor growth. However, the addition of calcitriol substantially increased aPPD-mediated tumor growth suppression (76% vs. 53%, combination vs. aPPD alone). The combination treatment significantly increased levels of cleaved caspase-3 apoptotic marker compared to vehicle-treated or aPPD-treated C4-2 tumors. The mechanistic elucidations indicate that tumor inhibition by the aPPD and calcitriol combination was accompanied by elevated vitamin D receptor (VDR) protein expression. In silico data suggest that aPPD weakly binds to the native LBD pocket of VDR. Interestingly, the combination of aPPD and calcitriol activated VDR at a significantly higher level than calcitriol alone and this indicates that aPPD may be an allosteric activator of VDR. Overall, aPPD and calcitriol combination significantly inhibited tumor growth in vivo with no acute or chronic toxic effects in the C4-2 xenograft CRPC nude mice. The involvement of VDR and downstream apoptotic pathways are potential mechanistic routes of antitumor effects of this combination.

7.
Front Mol Biosci ; 8: 611367, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869275

RESUMEN

The blood-brain barrier (BBB) hinders the distribution of therapeutics intended for treatment of neuroinflammation (NI) of the central nervous system. A twelve-amino acid peptide that transcytoses the BBB, termed MTfp, was chemically conjugated to siRNA to create a novel peptide-oligonucleotide conjugate (POC), directed to downregulate NOX4, a gene thought responsible for oxidative stress in ischemic stroke. The MTfp-NOX4 POC has the ability to cross the intact BBB and knockdown NOX4 expression in the brain. Following induction of ischemic stroke, animals pretreated with the POC exhibited significantly smaller infarcts; accompanied by increased protection against neurological deterioration and improved recovery. The data demonstrates that the MTfp can act as a nanomule to facilitate BBB transcytosis of siRNAs; where the NOX-4 specific siRNA moiety can elicit effective therapeutic knockdown of a gene responsible for oxidative stress in the central nervous system. This study is the first to conclusively demonstrate both siRNA-carrier delivery and therapeutic efficacy in any CNS disease model where the BBB remains intact and thus offers new avenues for potential treatments of oxidative stress underlying neuroinflammation in a variety of neuropathologies that are currently refractory to existing therapies.

8.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33418978

RESUMEN

The peripheral zone (PZ) and transition zone (TZ) represent about 70% of the human prostate gland with each zone having differential ability to develop prostate cancer. Androgens and their receptor are the primary driving cause of prostate cancer growth and eventually castration-resistant prostate cancer (CRPC). De novo steroidogenesis has been identified as a key mechanism that develops during CRPC. Currently, there is very limited information available on human prostate tissue steroidogenesis. The purpose of the present study was to investigate steroid metabolism in human prostate cancer tissues with comparison between PZ and TZ. Human prostate cancer tumors were procured from the patients who underwent radical prostatectomy without any neoadjuvant therapy. Human prostate homogenates were used to quantify steroid levels intrinsically present in the tissues as well as formed after incubation with 2 µg/mL of 17-hydroxypregnenolone (17-OH-pregnenolone) or progesterone. A Waters Acquity ultraperformance liquid chromatography coupled to a Quattro Premier XE tandem quadrupole mass spectrometer using a C18 column was used to measure thirteen steroids from the classical and backdoor steroidogenesis pathways. The intrinsic prostate tissue steroid levels were similar between PZ and TZ with dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT), pregnenolone and 17-OH-pregnenolone levels higher than the other steroids measured. Interestingly, 5-pregnan-3,20-dione, 5-pregnan-3-ol-20-one, and 5-pregnan-17-ol-3,20-dione formation was significantly higher in both the zones of prostate tissues, whereas, androstenedione, testosterone, DHT, and progesterone levels were significantly lower after 60 min incubation compared to the 0 min control incubations. The incubations with progesterone had a similar outcome with 5-pregnan-3,20-dione and 5-pregnan-3-ol-20-one levels were elevated and the levels of DHT were lower in both PZ and TZ tissues. The net changes in steroid formation after the incubation were more observable with 17-OH-pregnenolone than with progesterone. In our knowledge, this is the first report of comprehensive analyses of intrinsic prostate tissue steroids and precursor-driven steroid metabolism using a sensitive liquid chromatography-mass spectrometry assay. In summary, the PZ and TZ of human prostate exhibited similar steroidogenic ability with distinction in the manner each zone utilizes the steroid precursors to divert the activity towards backdoor pathway through a complex matrix of steroidogenic mechanisms.


Asunto(s)
Neoplasias de la Próstata/patología , Esteroides/metabolismo , Androstenodiona/análisis , Androsterona/análisis , Cromatografía Líquida de Alta Presión , Humanos , Masculino , Espectrometría de Masas , Progesterona/análogos & derivados , Progesterona/análisis , Progesterona/metabolismo , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Esteroides/análisis , Esteroides/química , Testosterona/análisis
9.
J Steroid Biochem Mol Biol ; 209: 105828, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33493594

RESUMEN

1α,25-dihydroxyvitamin D3 (1,25(OH)2D3, commonly known as calcitriol), the most active metabolite of vitamin D3, and ginsenoside Rh2 can regulate cellular differentiation and proliferation proteins. The purpose of the present study was to assess the effect of 1,25(OH)2D3 on the anticancer activities of Rh2 in human prostate cancer cells such as androgen-dependent LNCaP and androgen-independent C4-2 in vitro. The effects of treatment with 1,25(OH)2D3 or Rh2, either alone or in combination, on prostate cancer cells were evaluated through tetrazolium-based cell viability assay, BrdU cell proliferation rate estimation assay, and Western blot protein expression analyses of nuclear receptors (androgen receptor and vitamin D receptors) and apoptotic proteins (Bcl-2, Bax, and Caspase 3). The Combination Indices (CI) and Dose Reduction Indices (DRI) of 1,25(OH)2D3 and Rh2 were calculated to determine synergistic anticancer activity using Calcusyn software (Biosoft, Cambridge, UK). The cell viability assay data indicate that Rh2 treatment alone inhibited cell viability in a concentration-dependent manner and the addition of 10 nM 1,25(OH)2D3 to Rh2 significantly enhanced its ability to reduce cell viability up to 80 % in both the cell lines. Similarly, addition of 10 nM 1,25(OH)2D3 to Rh2 significantly lowered its IC50 values for cell proliferation from the range of 32-65 µM to 14-8 µM in LNCaP and C4-2 cells. In addition, protein expression analyses indicated that the combined treatment with Rh2 and 1,25(OH)2D3 led to greater downregulation of androgen receptor expression compared to single agent exposure. Similarly, the presence of 1,25(OH)2D3 synergistically increased the pro-apoptotic actions of Rh2 in both the cell lines. Overall, 1,25(OH)2D3 augments the Rh2-mediated anticancer effects through stimulating apoptosis and reduced cell proliferation which suggests that synergism of this combination may lead to potential lower need of the active vitamin D3 and limited toxicity from it.


Asunto(s)
Antineoplásicos/farmacología , Sinergismo Farmacológico , Ginsenósidos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Vitamina D/análogos & derivados , Apoptosis , Proliferación Celular , Quimioterapia Combinada , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Células Tumorales Cultivadas , Vitamina D/farmacología
10.
Mol Cancer Ther ; 18(10): 1811-1821, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31341032

RESUMEN

Hormone therapy is currently the mainstay in the management of locally advanced and metastatic prostate cancer. Degarelix (Firmagon), a gonadotropin-releasing hormone (GnRH) receptor antagonist differs from luteinizing hormone-releasing hormone (LHRH) agonists by avoiding "testosterone flare" and lower follicle-stimulating hormone (FSH) levels. The direct effect of degarelix and leuprolide on human prostate cancer cells was evaluated. In LNCaP, C4-2BMDVR, and CWR22Rv1 cells, degarelix significantly reduced cell viability compared with the controls (P ≤ 0.01). Leuprolide was stimulatory in the same cell lines. In C4-2B MDVR cells, degarelix alone or combined with abiraterone or enzalutamide reduced the AR-V7 protein expression compared with the control group. SCID mice bearing VCaP xenograft tumors were divided into 4 groups and treated with surgical castration, degarelix, leuprolide, or buffer alone for 4 weeks. Leuprolide slightly suppressed tumor growth compared with the vehicle control group (P > 0.05). Tumors in degarelix-treated mice were 67% of those in the leuprolide-treatment group but 170% larger than in surgically castrated ones. Measurements of intratumoral steroids in serum, tumor samples, or treated cell pellets by LC/MS confirmed that degarelix better decreased the levels of testosterone and steroidogenesis pathway intermediates, comparable to surgical castration, whereas leuprolide had no inhibitory effect. Collectively, our results suggested a selective mechanism of action of degarelix against androgen steroidogenesis and AR-variants. This study provides additional molecular insights regarding the mechanism of degarelix compared with GnRH agonist therapy, which may have clinical implications.


Asunto(s)
Empalme Alternativo/genética , Andrógenos/metabolismo , Hormona Liberadora de Gonadotropina/antagonistas & inhibidores , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/genética , Animales , Recuento de Células , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Hormona Liberadora de Gonadotropina/metabolismo , Leuprolida/farmacología , Leuprolida/uso terapéutico , Masculino , Ratones SCID , Oligopéptidos/farmacología , Oligopéptidos/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Receptores LHRH/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Cancer Res ; 79(13): 3320-3331, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31064850

RESUMEN

Aberrant cholesterol metabolism is increasingly appreciated to be essential for prostate cancer initiation and progression. Transcript expression of the high-density lipoprotein-cholesterol receptor scavenger receptor B1 (SR-B1) is elevated in primary prostate cancer. Hypothesizing that SR-B1 expression may help facilitate malignant transformation, we document increased SR-B1 protein and transcript expression in prostate cancer relative to normal prostate epithelium that persists in lethal castration-resistant prostate cancer (CRPC) metastasis. As intratumoral steroid synthesis from the precursor cholesterol can drive androgen receptor (AR) pathway activity in CRPC, we screened androgenic benign and cancer cell lines for sensitivity to SR-B1 antagonism. Benign cells were insensitive to SR-B1 antagonism, and cancer line sensitivity inversely correlated with expression levels of full-length and splice variant AR. In androgen-responsive CRPC cell model C4-2, SR-B1 antagonism suppressed cholesterol uptake, de novo steroidogenesis, and AR activity. SR-B1 antagonism also suppressed growth and viability and induced endoplasmic reticulum stress and autophagy. The inability of exogenous steroids to reverse these effects indicates that AR pathway activation is insufficient to overcome cytotoxic stress caused by a decrease in the availability of cholesterol. Furthermore, SR-B1 antagonism decreased cholesterol uptake, growth, and viability of the AR-null CRPC cell model PC-3, and the small-molecule SR-B1 antagonist block lipid transport-1 decreased xenograft growth rate despite poor pharmacologic properties. Overall, our findings show that SR-B1 is upregulated in primary and castration-resistant disease and is essential for cholesterol uptake needed to drive both steroidogenic and nonsteroidogenic biogenic pathways, thus implicating SR-B1 as a novel and potentially actionable target in CRPC. SIGNIFICANCE: These findings highlight SR-B1 as a potential target in primary and castration-resistant prostate cancer that is essential for cholesterol uptake needed to drive steroidogenic and nonsteroidogenic biogenic pathways.


Asunto(s)
Andrógenos/metabolismo , Neoplasias Óseas/secundario , Colesterol/metabolismo , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/secundario , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Depuradores de Clase B/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/metabolismo , Neoplasias Óseas/cirugía , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/cirugía , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/cirugía , Masculino , Ratones , Ratones Desnudos , Orquiectomía , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/cirugía , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Receptores Depuradores de Clase B/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Eur J Pharm Sci ; 130: 173-180, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30654110

RESUMEN

The physiological and anti-cancer functions of vitamin D3 are accomplished primarily via 1α,25-dihydroxyvitamin D3 (calcitriol), whereas 20(S)-protopanaxadiol (aPPD) is a ginsenoside, which is isolated from Panax ginseng, with potential anti-cancer benefits. In the present study, we report a pharmacokinetic (PK) herb-nutrient interaction between calcitriol and aPPD in mice. A liquid chromatography mass spectrometry (LC/MS) method was developed using 4-phenyl-1,2,4-triazoline-3,5-dione derivatizing agent and we subsequently used the method to quantitate calcitriol in mouse serum. The limit of quantitation was 0.01 ng/ml which is approximately 100 fold lower than the previously reported assay from our laboratory. Calcitriol PK parameters were determined in non-tumor-bearing or C4-2 human prostate tumor-bearing nude mice following oral co-administration of calcitriol either alone or in combination with aPPD. Mice were pretreated with oral aPPD (70 mg/kg) or vehicle control twice daily for seven consecutive days, followed by a single oral dose of 4 µg/kg calcitriol alone or in combination with aPPD. Our PK results demonstrated that co-administration of calcitriol with aPPD (following pre-treatment with vehicle for seven days) resulted in a 35% increase in the area under the curve (AUC0-24 h) and a 41% increase in the maximum serum concentration (Cmax) compared to the calcitriol only group. aPPD therefore significantly increased calcitriol serum exposure. We also saw a reduction in the time required to reach Cmax. In contrast, calcitriol PK in mice co-administered with calcitriol and aPPD as well as those pretreated seven consecutive days with aPPD was no different than that determined for the mice that received vehicle for seven days as pre-treatment. Co-administration of calcitriol with aPPD therefore could increase health benefits of vitamin D3, however any increased risk of hypercalcemia, resulting from this combination approach, requires further investigation. Lastly, we surmise that a cytochrome P450 inhibition-based mechanism may contribute to the observed PK interaction.


Asunto(s)
Calcitriol/análisis , Calcitriol/farmacocinética , Sapogeninas/análisis , Sapogeninas/farmacocinética , Espectrometría de Masas en Tándem/métodos , Administración Oral , Animales , Calcitriol/administración & dosificación , Hormonas y Agentes Reguladores de Calcio/administración & dosificación , Hormonas y Agentes Reguladores de Calcio/análisis , Hormonas y Agentes Reguladores de Calcio/farmacocinética , Cromatografía Liquida/métodos , Interacciones Farmacológicas/fisiología , Masculino , Ratones , Ratones Desnudos , Sapogeninas/administración & dosificación
13.
J Comp Neurol ; 527(2): 347-361, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30225913

RESUMEN

The transition between the breeding and nonbreeding states is often marked by a shift in energy balance. Despite this well-known shift in energy balance, little work has explored seasonal differences in the orexigenic neuropeptides that regulate food intake in wild animals. Here we tested the hypothesis that free-living male song sparrows (Melospiza melodia) show seasonal changes in energetic state, circulating steroids, and both neuropeptide Y (NPY) and orexin (OX) immunoreactivity. Nonbreeding song sparrows had more fat and muscle, as well as a ketone and triglyceride profile suggesting a greater reliance on lipid reserves. Breeding birds had higher plasma androgens; however, nonbreeding birds did maintain androgen precursors in circulation. Nonbreeding birds had more NPY immunoreactivity, specifically in three brain regions: lateral septum, bed nucleus of the stria terminalis, and ventral tegmental area. Furthermore, nonbreeding birds had more OX immunoreactivity in multiple brain regions. Taken together, the data indicate that a natural shift in energy balance is associated with changes in NPY and OX in a region-specific manner.


Asunto(s)
Andrógenos/metabolismo , Encéfalo/metabolismo , Neuropéptido Y/metabolismo , Orexinas/metabolismo , Estaciones del Año , Gorriones/metabolismo , Tejido Adiposo/anatomía & histología , Tejido Adiposo/metabolismo , Animales , Encéfalo/anatomía & histología , Colesterol/metabolismo , Masculino , Músculos/anatomía & histología , Músculos/metabolismo , Reproducción/fisiología , Gorriones/anatomía & histología
14.
Cancers (Basel) ; 10(10)2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241348

RESUMEN

Castration-resistant prostate tumors acquire the independent capacity to generate androgens by upregulating steroidogenic enzymes or using steroid precursors produced by the adrenal glands for continued growth and sustainability. The formation of steroids was measured by liquid chromatography-mass spectrometry in LNCaP and 22Rv1 prostate cancer cells, and in human prostate tissues, following incubation with steroid precursors (22-OH-cholesterol, pregnenolone, 17-OH-pregnenolone, progesterone, 17-OH-progesterone). Pregnenolone, progesterone, 17-OH-pregnenolone, and 17-OH-progesterone increased C21 steroid (5-pregnan-3,20-dione, 5-pregnan-3,17-diol-20-one, 5-pregnan-3-ol-20-one) formation in the backdoor pathway, and demonstrated a trend of stimulating dihydroepiandrosterone or its precursors in the backdoor pathway in LNCaP and 22Rv1 cells. The precursors differentially affected steroidogenic enzyme messenger RNA (mRNA) expressions in the cell lines. The steroidogenesis following incubation of human prostate tissue with 17-OH-pregnenolone and progesterone produced trends similar to those observed in cell lines. Interestingly, the formation of C21 steroids from classical pathway was not stimulated but backdoor pathway steroids (e.g., 5-pregnan-3,20-dione, 5-pregnan-3-ol-20-one) were elevated following incubations with prostate tissues. Overall, C21 steroids were predominantly formed in the classical as well as backdoor pathways, and steroid precursors induced a diversion of steroidogenesis to the backdoor pathway in both cell lines and human prostate tissue, and influenced adaptive steroidogenesis to form C21 steroids.

15.
Oncotarget ; 9(30): 20965-20978, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29765513

RESUMEN

We have explored the effects of 20(S)-protopanaxadiol (aPPD), a naturally derived ginsenoside, against androgen receptor (AR) positive castration resistant prostate cancer (CRPC) xenograft tumors and have examined its interactions with AR. In silico docking studies for aPPD binding to AR, alongside transactivation bioassays and in vivo efficacy studies were carried out in the castration-resistant C4-2 xenograft model. Immunohistochemical (IHC) and Western blot analyses followed by evaluation of AR, apoptotic, cell cycle and proliferative markers in excised tumors was performed. The growth of established CRPC tumors was inhibited by 53% with aPPD and a corresponding decrease in serum PSA was seen compared to controls. The IHC data revealed that Ki-67 was significantly lower for aPPD treated tumors and was associated with elevated p21 and cleaved caspase-3 expression, compared to vehicle treatment. Furthermore, aPPD decreased AR protein expression in xenograft tumors, while significantly upregulating p27 and Bax protein levels. In vitro data supporting this suggests that aPPD binds to and significantly inhibits the N-terminal or the DNA binding domains of AR. The AR androgen binding site docking score for androgen (dihydrotestosterone) was -11.1, while that of aPPD was -7.1. The novel findings described herein indicate aPPD potently inhibits PCa in vivo partly via inhibition of a site on the AR N-terminal domain. This manifested as cell cycle arrest and concurrent induction of apoptosis via an increase in Bax, cleaved-caspase-3, p27 and p21 expression.

16.
Invest New Drugs ; 36(4): 718-725, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29607466

RESUMEN

Prostate cancer is the second leading cause of cancer-related deaths in men in North America and there is an urgent need for development of more effective therapeutic treatments against this disease. We have recently shown that diindolylmethane (DIM) and several of its halogenated derivatives (ring-DIMs) induce death and protective autophagy in human prostate cancer cells. However, the in vivo efficacy of ring-DIMs and the use of autophagy inhibitors as adjuvant therapy have not yet been studied in vivo. The objective of this study was to determine these effects on tumor growth in nude CD-1 mice bearing bioluminescent androgen-independent PC-3 human prostate cancer cells. We found that chloroquine (CQ) significantly sensitized PC-3 cells to death in the presence of sub-toxic concentrations of DIM or 4,4'-Br2DIM in vitro. Moreover, a combination of DIM (10 mg/kg) and CQ (60 mg/kg), 3× per week, significantly decreased PC-3 tumor growth in vivo after 3 and 4 weeks of treatment. Furthermore, 4,4'-Br2DIM at 10 mg/kg (3× per week) significantly inhibited tumour growth after 4 weeks of treatment. Tissues microarray analysis showed that DIM alone or combined with CQ induced apoptosis marker TUNEL; the combination also significantly inhibited the cell proliferation marker Ki67. In conclusion, we have confirmed that DIM and 4,4'-Br2DIM are effective agents against prostate cancer in vivo and shown that inhibition of autophagy with CQ enhances the anticancer efficacy of DIM. Our results suggest that including selective autophagy inhibitors as adjuvants may improve the efficacy of existing and novel drug therapies against prostate cancer.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Brassicaceae/química , Indoles/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Verduras/química , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cloroquina/farmacología , Xenoinjertos/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Desnudos , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
17.
Sci Rep ; 8(1): 2090, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29391407

RESUMEN

The molecular chaperone Hsp90 is overexpressed in prostate cancer (PCa) and is responsible for the folding, stabilization and maturation of multiple oncoproteins, which are implicated in PCa progression. Compared to first-in-class Hsp90 inhibitors such as 17-allylamino-demethoxygeldanamycin (17-AAG) that were clinically ineffective, second generation inhibitor AUY922 has greater solubility and efficacy. Here, transcriptomic and proteomic analyses of patient-derived PCa explants identified cytoskeletal organization as highly enriched with AUY922 treatment. Validation in PCa cell lines revealed that AUY922 caused marked alterations to cell morphology, and suppressed cell motility and invasion compared to vehicle or 17-AAG, concomitant with dysregulation of key extracellular matrix proteins such as fibronectin (FN1). Interestingly, while the expression of FN1 was increased by AUY922, FN1 secretion was significantly decreased. This resulted in cytosolic accumulation of FN1 protein within late endosomes, suggesting that AUY922 disrupts vesicular secretory trafficking pathways. Depletion of FN1 by siRNA knockdown markedly reduced the invasive capacity of PCa cells, phenocopying AUY922. These results highlight a novel mechanism of action for AUY922 beyond its established effects on cellular mitosis and survival and, furthermore, identifies extracellular matrix cargo delivery as a potential therapeutic target for the treatment of aggressive PCa.


Asunto(s)
Fibronectinas/metabolismo , Neoplasias de la Próstata/metabolismo , Vías Secretoras/efectos de los fármacos , Anciano , Antineoplásicos/farmacología , Línea Celular Tumoral , Movimiento Celular , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Fibronectinas/genética , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Isoxazoles/farmacología , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Neoplasias de la Próstata/patología , Resorcinoles/farmacología
18.
Cell Signal ; 40: 172-182, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28923415

RESUMEN

3,3'-Diindolylmethane (DIM) and its synthetic halogenated derivatives 4,4'-Br2- and 7,7'-Cl2DIM (ring-DIMs) have recently been shown to induce protective autophagy in human prostate cancer cells. The mechanisms by which DIM and ring-DIMs induce autophagy have not been elucidated. As DIM is a mitochondrial ATP-synthase inhibitor, we hypothesized that DIM and ring-DIMs induce autophagy via alteration of intracellular AMP/ATP ratios and activation of AMP-activated protein kinase (AMPK) signaling in prostate cancer cells. We found that DIM and ring-DIMs induced autophagy was accompanied by increased autophagic vacuole formation and conversion of LC3BI to LC3BII in LNCaP and C42B human prostate cancer cells. DIM and ring-DIMs also induced AMPK, ULK-1 (unc-51-like autophagy activating kinase 1; Atg1) and acetyl-CoA carboxylase (ACC) phosphorylation in a time-dependent manner. DIM and the ring-DIMs time-dependently induced the oncogenic protein astrocyte-elevated gene 1 (AEG-1) in LNCaP and C42B cells. Downregulation of AEG-1 or AMPK inhibited DIM- and ring-DIM-induced autophagy. Pretreatment with ULK1 inhibitor MRT 67307 or siRNAs targeting either AEG-1 or AMPK potentiated the cytotoxicity of DIM and ring-DIMs. Interestingly, downregulation of AEG-1 induced senescence in cells treated with overtly cytotoxic concentrations of DIM or ring-DIMs and inhibited the onset of apoptosis in response to these compounds. In summary, we have identified a novel mechanism for DIM- and ring-DIM-induced protective autophagy, via induction of AEG-1 and subsequent activation of AMPK. Our findings could facilitate the development of novel drug therapies for prostate cancer that include selective autophagy inhibitors as adjuvants.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Moléculas de Adhesión Celular/genética , Indoles/administración & dosificación , Neoplasias de la Próstata/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Halogenación/efectos de los fármacos , Humanos , Indoles/química , Masculino , Proteínas de la Membrana , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
20.
Gen Comp Endocrinol ; 244: 108-117, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-26899721

RESUMEN

The zebra finch is a common model organism in neuroscience, endocrinology, and ethology. Zebra finches are generally considered opportunistic breeders, but the extent of their opportunism depends on the predictability of their habitat. This plasticity in the timing of breeding raises the question of how domestication, a process that increases environmental predictability, has affected their reproductive physiology. Here, we compared circulating steroid levels in various "strains" of zebra finches. In Study 1, using radioimmunoassay, we examined circulating testosterone levels in several strains of zebra finches (males and females). Subjects were wild or captive (Captive Wild-Caught, Wild-Derived, or Domesticated). In Study 2, using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we examined circulating sex steroid profiles in wild and domesticated zebra finches (males and females). In Study 1, circulating testosterone levels in males differed across strains. In Study 2, six steroids were detectable in plasma from wild zebra finches (pregnenolone, progesterone, dehydroepiandrosterone (DHEA), testosterone, androsterone, and 5α-dihydrotestosterone (5α-DHT)). Only pregnenolone and progesterone levels changed across reproductive states in wild finches. Compared to wild zebra finches, domesticated zebra finches had elevated levels of circulating pregnenolone, progesterone, DHEA, testosterone, androstenedione, and androsterone. These data suggest that domestication has profoundly altered the endocrinology of this common model organism. These results have implications for interpreting studies of domesticated zebra finches, as well as studies of other domesticated species.


Asunto(s)
Domesticación , Pinzones/fisiología , Hormonas Esteroides Gonadales/sangre , Reproducción/fisiología , Animales , Femenino , Pinzones/sangre , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA