Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 643, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38097929

RESUMEN

BACKGROUND: Bright flower colour assists plants attract insects to complete pollination and provides distinct ornamental values. In some medicinal plants, diverse flower colour variations usually imply differences in active ingredients. Compared to the common bluish purple of Scutellaria baicalensis flower (SB), the natural variants present rose red (SR) and white (SW) flowers were screened out under the same growing conditions in the genuine producing area Shandong Province, China. However, the mechanism of flower colour variation in S. baicalensis was remain unclear. In the present study, we conducted integrated transcriptome and metabolome analyses to uncover the metabolic difference and regulation mechanism in three S. baicalensis flowers. RESULTS: The results showed that 9 anthocyanins were identified. Among which, 4 delphinidin-based anthocyanins were only detected in SB, 4 cyanidin-based anthocyanins (without cyanidin-3-O-glucoside) mainly accumulated in SR, and no anthocyanin but high level of flavanone, naringenin, was detected in SW. The gene expression profile indicated that the key structural genes in the flavonoid and anthocyanin biosynthesis pathway differentially expressed in flowers with different colours. Compared to SB, the down-regulated expression of F3'5'H, ANS, and 3GT gene in SR might influence the anthocyanin composition. Especially the InDel site with deletion of 7 nucleotides (AATAGAG) in F3'5'H in SR might be the determinant for lack of delphinidin-based anthocyanins in rose red flowers. In SW, the lower expression levels of DFR and two F3H genes might reduce the anthocyanin accumulation. Notably the SNP site of G > A mutation in the splicing site of DFR in SW might block anthocyanin biosynthesis from flavanones and thus cause white flowers. In addition, several key transcription factors, including MYB, bHLH, and NAC, which highly correlated with structural gene expression and anthocyanin contents were also identified. CONCLUSIONS: These results provide clues to uncover the molecular regulatory mechanism of flower colour variation in S. baicalensis and promote novel insights into understanding the anthocyanin biosynthesis and regulation.


Asunto(s)
Antocianinas , Scutellaria baicalensis , Antocianinas/metabolismo , Color , Scutellaria baicalensis/genética , Scutellaria baicalensis/metabolismo , Perfilación de la Expresión Génica , Flores/metabolismo , Transcriptoma , Metaboloma , Regulación de la Expresión Génica de las Plantas , Pigmentación/genética
2.
Gene ; 888: 147739, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37633535

RESUMEN

The active ingredients of many medicinal plants are the secondary metabolites associated with the growth period. Lonicera japonica Thunb. is an important traditional Chinese medicine, and the flower development stage is an important factor that influences the quality of medicinal ingredients. In this study, transcriptomics and metabolomics were performed to reveal the regulatory mechanism of secondary metabolites during flowering of L. japonica. The results showed that the content of chlorogenic acid (CGA) and luteolin gradually decreased from green bud stage (Sa) to white flower stage (Sc), especially from white flower bud stage (Sb) to Sc. Most of the genes encoding the crucial rate-limiting enzymes, including PAL, C4H, HCT, C3'H, F3'H and FNSII, were down-regulated in three comparisons. Correlation analysis identified some members of the MYB, AP2/ERF, bHLH and NAC transcription factor families that are closely related to CGA and luteolin biosynthesis. Furthermore, differentially expressed genes (DEGs) involved in hormone biosynthesis, signalling pathways and flowering process were analysed in three flower developmental stage.


Asunto(s)
Ácido Clorogénico , Lonicera , Ácido Clorogénico/metabolismo , Luteolina , Perfilación de la Expresión Génica , Lonicera/genética , Flores/genética , Flores/metabolismo , Hormonas/metabolismo , Transcriptoma/genética
3.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36077124

RESUMEN

Seed size is a key factor affecting crop yield and a major agronomic trait concerned in peanut (Arachis hypogaea L.) breeding. However, little is known about the regulation mechanism of peanut seed size. In the present study, a peanut small seed mutant1 (ssm1) was identified through irradiating peanut cultivar Luhua11 (LH11) using 60Coγ ray. Since the globular embryo stage, the embryo size of ssm1 was significantly smaller than that of LH11. The dry seed weight of ssm1 was only 39.69% of the wild type LH14. The seeds were wrinkled with darker seed coat. The oil content of ssm1 seeds were also decreased significantly. Seeds of ssm1 and LH11 were sampled 10, 20, and 40 days after pegging (DAP) and were used for RNA-seq. The results revealed that genes involved in plant hormones and several transcription factors related to seed development were differentially expressed at all three stages, especially at DAP10 and DAP20. Genes of fatty acid biosynthesis and late embryogenesis abundant protein were significantly decreased to compare with LH11. Interestingly, the gene profiling data suggested that PKp2 and/or LEC1 could be the key candidate genes leading to the small seed phenotype of the mutant. Our results provide valuable clues for further understanding the mechanisms underlying seed size control in peanut.


Asunto(s)
Arachis , Regulación de la Expresión Génica de las Plantas , Arachis/metabolismo , Perfilación de la Expresión Génica , Fitomejoramiento , Semillas/metabolismo , Transcriptoma
4.
Gene ; 791: 145722, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34010708

RESUMEN

Plant height is a fundamentally crucial agronomic trait to control crop growth and high yield cultivation. Several studies have been conducted on the understanding ofmolecular genetic bases of plant height in model plants and crops. However, the molecular mechanism underlying peanut plant height development is stilluncertain. In the present study, we created a peanut mutant library by fast neutron irradiation using peanut variety SH13 and identified a semi-dwarf mutant 1 (sdm1). At 84 DAP (days after planting), the main stem of sdm1 was only about 62% of SH13. The internode length of sdm1 hydroponic seedlings was found significantly shorter than that of SH13 at 14 DAP. In addition, the foliar spraying of exogenous IAA could partially restore the semi-dwarf phenotype of sdm1. Transcriptome data indicated that the differentially expressed genes (DEGs) between sdm1 and SH13 significantly enriched in diterpenoid biosynthesis, alpha-linolenic acid metabolism, brassinosteroid biosynthesis, tryptophan metabolism and plant hormone signal transduction. The expression trend of most of the genes involved in IAA and JA pathway showed significantly down- and up- regulation, which may be one of the key factors of the sdm1 semi-dwarf phenotype. Moreover, several transcription factorsand cell wall relatedgenes were expressed differentially between sdm1 and SH13. Conclusively, this research work not only provided important clues to unveil the molecular mechanism of peanut plant height regulation, but also presented basic materials for breeding peanut cultivars with ideal plant height.


Asunto(s)
Arachis/crecimiento & desarrollo , Arachis/genética , Regulación de la Expresión Génica de las Plantas/genética , Biometría/métodos , Fabaceae/genética , Fabaceae/crecimiento & desarrollo , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Fenotipo , Fitomejoramiento/métodos , Reguladores del Crecimiento de las Plantas/metabolismo , RNA-Seq/métodos , Plantones/genética , Transcriptoma/genética
5.
BMC Genomics ; 21(1): 211, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32138648

RESUMEN

BACKGROUND: Plant height, mainly decided by main stem height, is the major agronomic trait and closely correlated to crop yield. A number of studies had been conducted on model plants and crops to understand the molecular and genetic basis of plant height. However, little is known on the molecular mechanisms of peanut main stem height. RESULTS: In this study, a semi-dwarf peanut mutant was identified from 60Co γ-ray induced mutant population and designated as semi-dwarf mutant 2 (sdm2). The height of sdm2 was only 59.3% of its wild line Fenghua 1 (FH1) at the mature stage. The sdm2 has less internode number and short internode length to compare with FH1. Gene expression profiles of stem and leaf from both sdm2 and FH1 were analyzed using high throughput RNA sequencing. The differentially expressed genes (DEGs) were involved in hormone biosynthesis and signaling pathways, cell wall synthetic and metabolic pathways. BR, GA and IAA biosynthesis and signal transduction pathways were significantly enriched. The expression of several genes in BR biosynthesis and signaling were found to be significantly down-regulated in sdm2 as compared to FH1. Many transcription factors encoding genes were identified as DEGs. CONCLUSIONS: A large number of genes were found differentially expressed between sdm2 and FH1. These results provide useful information for uncovering the molecular mechanism regulating peanut stem height. It could facilitate identification of causal genes for breeding peanut varieties with semi-dwarf phenotype.


Asunto(s)
Arachis/crecimiento & desarrollo , Arachis/genética , Transcriptoma/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Reguladores del Crecimiento de las Plantas/biosíntesis , Reguladores del Crecimiento de las Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , RNA-Seq
6.
PLoS One ; 8(8): e71714, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23951228

RESUMEN

Arabidopsis LEAFY COTYLEDON (LEC) genes, AtLEC1 and AtLEC2, are important embryonic regulators that play key roles in morphogenesis and maturation phases during embryo development. Ectopic expression of AtLEC1 and AtLEC2 in tobacco caused abnormality in transgenic seedling. When transgenic seeds germinated on medium containing 30 µM DEX, LEC1 transgenic seedlings were ivory and fleshy, with unexpanded cotyledons, stubby hypocotyls, short roots and no obvious callus formation at the shoot meristem position. While LEC2 transgenic seedlings formed embryonic callus on the shoot apical meristem and somatic embryo-like structures emerged from the surface of the callus. When callus were transferred to hormone free MS0 medium more shoots were regenerated from each callus. However, shoot formation was not observed in LEC1 overexpressors. To investigate the mechanisms of LEC2 in somatic embryogenesis, we studied global gene expression by digital gene expression profiling analysis. The results indicated that ectopic expression of LEC2 genes induced accumulation of embryo-specific proteins such as seed storage proteins, late embryogenesis abundant (LEA) proteins, fatty acid biosynthetic enzymes, products of steroid biosynthesis related genes and key regulatory genes of the embryo development. Genes of plant-specific transcription factors such as NAC domain protein, AP2 and GRAS family, resistance-related as well as salicylic acid signaling related genes were up-regulated in LEC2 transgenic seedlings. Ectopi c expression of LEC2 induced large number of somatic embryo formation and shoot regeneration but 20 d DEX induction of LEC1 is not sufficient to induce somatic embryogenesis and shoot formation. Our data provide new information to understand the mechanisms on LEC2 gene's induction of somatic embryogenesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Desarrollo Embrionario/genética , Regulación de la Expresión Génica de las Plantas , Nicotiana/embriología , Nicotiana/genética , Factores de Transcripción/genética , Dexametasona/farmacología , Desarrollo Embrionario/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Germinación/genética , Plantas Modificadas Genéticamente , Regeneración/efectos de los fármacos , Regeneración/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA