Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Phys Chem Chem Phys ; 23(33): 17888-17893, 2021 Sep 07.
Article En | MEDLINE | ID: mdl-34378570

Ionic liquids (ILs) are potential green solvents with very broad application prospects. Their toxicity and other biological effects are largely related to their hydrophobic properties. In this work, the effects of two imidazolium-based ILs with either a butyl or a hexyl chain, [C4mim][OAc] or [C6mim][OAc], on the phase behaviours of a representative phospholipid, dipalmitoylphosphatidylcholine (DPPC), were examined using synchrotron small- and wide-angle X-ray scattering and differential scanning calorimetry techniques. A series of samples with a lipid : IL molar ratio ranging from 1 : 0 to 1 : 4/1 : 5 were prepared as aqueous dispersions in the form of multi-lamellar vesicles. The two ILs were found to have distinct effects on the phase behaviours of DPPC. For [C4mim][OAc], its effect is very limited. In contrast, for [C6mim][OAc], it could eliminate the pre-transition of DPPC, markedly affect the main phase transition of the lipid, and insert into the DPPC bilayer at gel state to form an interdigitated gel phase. The findings increased our understanding on the biological effects of imidazolium-based ILs and might shed light on the design of novel IL-based antimicrobials.


1,2-Dipalmitoylphosphatidylcholine/chemistry , Imidazoles/chemistry , Ionic Liquids/chemistry , Molecular Structure , Phase Transition
2.
J Phys Chem Lett ; 12(19): 4484-4489, 2021 May 20.
Article En | MEDLINE | ID: mdl-33956459

Understanding the self-assembly mechanisms of amphiphilic molecules in solutions and regulating their phase behaviors are of primary significance for their applications. To challenge the reported direct phase transitions from nonlamellar to ordered lamellar phases, the self-assembly and phase behavior of the 1-hexadecyl-3-methylimidazolium chloride aqueous dispersions were studied using a strategy of isothermal incubation after the temperature jump. A disordered lamellar phase (identified as the lamellar liquid-crystal (Lα) phase), serving as an intermediate, was found to bridge the transition from a spherical micellar (M) phase to a lamellar-gel (Lß) phase. Meanwhile, the nonsynchronicity in the tail and headgroup regions of the ionic liquid surfactant during the transition process was also unveiled, with the former being prior to the latter. The in-depth understanding of the self-assembly mechanisms may help push forward the related applications in the future.

3.
Langmuir ; 36(42): 12684-12691, 2020 10 27.
Article En | MEDLINE | ID: mdl-33047603

The asymmetric distribution of lipids in plasma membranes is closely related to the physiological functions of cells. To improve our previous approach in fabricating asymmetric vesicles, we defined a parameter, asymmetric degree, in this work and investigated the effects of vesicle size, incubation temperature, and lipid composition on the formation process of asymmetric phosphatidylserine (PS)-containing lipid vesicles. The results indicate that all of the three factors have marked but different effects on the time-dependent asymmetric degree of the vesicles as well as the flip and flop rate constants of the PS lipids. However, only vesicle size and PS content show significant influence on the maximal asymmetric degree of the vesicles, while the incubation temperature exhibits negligible effect. This work not only deepens our understanding on the packing property of PS molecules in self-assembled membranes and the formation mechanism of asymmetric vesicles but also practically provides a solution to regulate the asymmetric degree of the PS-containing vesicles using the established kinetic equation. In addition, the method would facilitate researches related to asymmetric vesicles or reconstruction of biological membranes.

4.
J Phys Chem Lett ; 11(3): 1007-1012, 2020 Feb 06.
Article En | MEDLINE | ID: mdl-31958952

We propose the concept of local acidity in condensed-phase chemistry in this work. The feature is demonstrated in trifluoroethanol (TFE) by employing two Fourier-transform infrared spectroscopy (FTIR) nitrile probes, acetonitrile (CH3CN) and benzonitrile (PhCN). Specifically, three positive excess peaks were found in the binary systems composed of TFE and a probe using excess spectroscopy. To characterize the local acidity quantitatively, we have tried to correlate the wavenumbers of the positive excess peaks of the probes and the pKa values in water of a series of XH-containing compounds (X = O, N, and C). Good linear relationships were discovered. Accordingly, three different pKa values of TFE were determined based on the three positive excess infrared peaks, which are attributed to the monomer, dimer, and trimer of TFE with the help of quantum-chemical calculations. The concept of local acidity and its quantitative evaluation enrich our knowledge of acid-base chemistry and will shed light on a better understanding of microstructures of solutions.

5.
Clin Lung Cancer ; 21(1): 47-55, 2020 01.
Article En | MEDLINE | ID: mdl-31474376

PURPOSE: To develop a prediction model based on 18F-fludeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) for solid pulmonary nodules (SPNs) with high malignant probability. PATIENTS AND METHODS: We retrospectively reviewed the records of CT-undetermined SPNs, which were further evaluated by PET/CT between January 2008 and December 2015. A total of 312 cases were included as a training set and 159 as a validation set. Logistic regression was applied to determine independent predictors, and a mathematical model was deduced. The area under the receiver operating characteristic curve (AUC) was compared to other models. Model fitness was assessed based on the American College of Chest Physicians guidelines. RESULTS: There were 215 (68.9%) and 127 (79.9%) malignant lesions in the training and validation sets, respectively. Eight independent predictors were identified: age [odds ratio (OR) = 1.030], male gender (OR = 0.268), smoking history (OR = 2.719), lesion diameter (OR = 1.067), spiculation (OR = 2.530), lobulation (OR = 2.614), cavity (OR = 2.847), and standardized maximum uptake value of SPNs (OR = 1.229). Our AUCs (training set, 0.858; validation set, 0.809) was better than those of previous models (Mayo: 0.685, P = .0061; Peking University People's Hospital: 0.646, P = .0180; Herder: 0.708, P = .0203; Zhejiang University: 0.757, P = .0699). The C index of the nomogram was 0.858. Our model reduced the diagnosis of indeterminate nodules (26.4% vs. 79.2%, 53.5%, 39.6%, and 34.0%, respectively) while improved sensitivity (81.3% vs. 16.4%, 49.2%, 62.5%, and 68.0%, respectively) and accuracy (65.4% vs. 16.4%, 39.6%, 52.8%, and 58.5%, respectively). CONCLUSION: Our model could permit accurate diagnoses and may be recommended to identify malignant SPNs with high malignant probability, as our data pertain to a very high-prevalence cohort only.


Carcinoma, Non-Small-Cell Lung/pathology , Fluorodeoxyglucose F18/metabolism , Lung Neoplasms/pathology , Positron Emission Tomography Computed Tomography/methods , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/metabolism , Female , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/metabolism , Male , Middle Aged , Neoplasm Invasiveness , Predictive Value of Tests , ROC Curve , Radiopharmaceuticals/metabolism , Retrospective Studies
6.
J Phys Chem B ; 123(26): 5474-5482, 2019 07 05.
Article En | MEDLINE | ID: mdl-31244097

Among various applications, ionic liquids (ILs) have been used as antimicrobial agents in laboratories, possibly through induction of the leakage of bacteria. A molecular-level understanding of the mechanism that describes how ILs enhance the permeation of membranes is still lacking. In this study, the effects of imidazolium-based ILs with different alky chain lengths on the structure and phase behavior of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE), which is a representative bacteria-membrane-rich lipid, have been investigated. By employing differential scanning calorimetry and synchrotron small- and wide-angle X-ray scattering techniques, we found that ILs with longer alkyl chains influenced the phase behavior more effectively, and lower IL concentrations are needed to induce phase separation for both lamellar liquid crystalline phase and nonlamellar inverted hexagonal phase of POPE. Interestingly, the IL with an alkyl chain of 12 carbon atoms ([C12mim]Cl) shows a difference. It exhibits a stronger disturbing effect on the POPE bilayer structure than [C16mim]Cl, indicating that the ability of ILs to influence the membrane structures is dependent not only on the alkyl chain length of ILs, but also on the degree of matching of the alkyl chain lengths of ILs and lipids. The new lamellar and nonlamellar structures induced by ILs both have smaller repeat distances than that of pure POPE, implying thinner membrane structures. Data of the fluorescence-based vesicle dye leakage assay are consistent with these results, particularly the defects caused by IL-induced phase separation can enhance the membrane permeability markedly. The present work may shed light on our understanding of the antimicrobial mechanism of ILs.


Imidazoles/chemistry , Ionic Liquids/chemistry , Phosphatidylethanolamines/chemistry , Calorimetry, Differential Scanning , Fluorescent Dyes/chemistry , Molecular Structure , X-Ray Diffraction
7.
Langmuir ; 32(26): 6739-45, 2016 07 05.
Article En | MEDLINE | ID: mdl-27276053

Lipid rafts are highly ordered small microdomains mainly composed of glycosphingolipids, cholesterol, and protein receptors. Optically distinguishing lipid raft domains in cell membranes would greatly facilitate the investigations on the structure and dynamics of raft-related cellular behaviors, such as signal transduction, membrane transport (endocytosis), adhesion, and motility. However, current strategies about the visualization of lipid raft domains usually suffer from the low biocompatibility of the probes, invasive detection, or ex situ observation. At the same time, naturally derived biomacromolecules have been extensively used in biomedical field and their interaction with cells remains a long-standing topic since it is closely related to various fundamental studies and potential applications. Herein, noninvasive visualization of lipid raft domains in model lipid bilayers (supported lipid bilayers and giant unilamellar vesicles) and live cells was successfully realized in situ using fluorescent biomacromolecules: the fluorescein isothiocyanate (FITC)-labeled glycol chitosan molecules. We found that the lipid raft domains in model or real membranes could be specifically stained by the FITC-labeled glycol chitosan molecules, which could be attributed to the electrostatic attractive interaction and/or hydrophobic interaction between the probes and the lipid raft domains. Since the FITC-labeled glycol chitosan molecules do not need to completely insert into the lipid bilayer and will not disturb the organization of lipids, they can more accurately visualize the raft domains as compared with other fluorescent dyes that need to be premixed with the various lipid molecules prior to the fabrication of model membranes. Furthermore, the FITC-labeled glycol chitosan molecules were found to be able to resist cellular internalization and could successfully visualize rafts in live cells. The present work provides a new way to achieve the imaging of lipid rafts and also sheds new light on the interaction between biomacromolecules and lipid membranes.

8.
Chempluschem ; 79(4): 569-576, 2014 Apr.
Article En | MEDLINE | ID: mdl-31986710

White-fungus-like NiSx microspheres have been synthesized on a large scale by using a simple hydrothermal method. The influence of the reaction time and the surfactant on the final products was investigated, and the formation mechanism was discussed. The synthesized white-fungus-like NiSx microspheres were used firstly as fillers in the fabrication of NiSx /polyvinylidene fluoride (PVDF) composites. Relationships between the loadings of the NiSx and wave-absorption properties of the composites were analyzed. The loss mechanisms of NiSx /PVDF with different loadings were also discussed according to their dielectric and magnetic behaviors.

...