Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Funct ; 15(16): 8395-8407, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39036891

RESUMEN

Capsaicin (CAP), the active ingredient in hot chilli peppers, has anti-inflammatory and hepatoprotection effects. Acute alcoholic liver injury (AALI) is liver damage caused by acute alcohol abuse, which can lead to severe liver lesions and even be life-threatening. Pyroptosis is inflammation-related programmed cell death characterized by membrane rupture and plays a key role in AALI. The endosomal sorting complexes required for transport (ESCRT) proteins can gather at damaged areas of the membrane to facilitate the process of sealing the membrane. In this study, we found that CAP could relieve acute alcohol-induced pyroptosis of hepatocytes in vitro and in vivo. Mechanically, we found that CAP could alleviate acute alcohol-induced pyroptosis by activating the ESCRT-III-dependent membrane repair machinery. Furthermore, the data showed that CAP induced ESCRT-III protein expression by activating transient receptor potential vanilloid member 1 (TRPV1) on the cell membrane and Ca2+ influx. TRPV1 inhibitor capsazepine (CPZ) inhibited the relief effect of CAP on acute alcohol-induced pyroptosis. Overall, these results showed that CAP might activate ESCRT-III-dependent membrane repair machinery through Ca2+ influx, which is regulated by TRPV1 calcium channels, therefore mitigating acute alcohol-induced pyroptosis. Our research provides a new perspective on a naturally active food product to promote cell repair and relieve AALI.


Asunto(s)
Capsaicina , Membrana Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte , Hepatocitos , Piroptosis , Canales Catiónicos TRPV , Piroptosis/efectos de los fármacos , Capsaicina/farmacología , Capsaicina/análogos & derivados , Animales , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Ratones , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Canales Catiónicos TRPV/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Etanol , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/metabolismo
2.
J Dairy Sci ; 107(8): 5316-5329, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38608952

RESUMEN

Lactoferrin is widely found in milk and has the ability to bind iron. Previous studies have reported that lactoferrin was effective in the prevention and treatment of acute alcohol-induced liver injury (AALI). Ferroptosis is a recently discovered cell death and is involved in the development of AALI. However, the potential role of lactoferrin in acute alcohol-induced ferroptosis is still unclear. In this study, we observed that lactoferrin (10, 20, and 40 µg/mL) significantly mitigated alcohol (300 mM)-induced injury in vitro. Additionally, lactoferrin (100 and 200 mg/kg BW) significantly alleviated alcohol (4.8 g/kg BW)-induced injury in vivo. Our results showed that lactoferrin inhibited alcohol-induced upregulation of the ferroptosis marker protein ACSL4 and downregulation of GPX4. Meanwhile, lactoferrin treatment successfully reversed the elevated malondialdehyde (MDA) levels and the reduced glutathione (GSH) levels caused by alcohol treatment. These results may indicate that lactoferrin significantly decreased ferroptosis in vivo and in vitro. Lactoferrin has the potential to chelate iron, and our results showed that lactoferrin (20 µg/mL) significantly reduced iron ions and the expression of the ferritin heavy chain (FTH) under FeCl3 (100 µM) treatment. It was demonstrated that lactoferrin had a significant iron-chelating effect and reduced iron overload caused by FeCl3 in AML12 cells. Next, we examined iron content and the expression of iron metabolism marker proteins transferrin receptor (TFR), divalent metal transporter 1 (DMT1), FTH, and ferroportin (FPN). Our results showed that lactoferrin alleviated iron overload induced by acute alcohol. The expression of TFR and DMT1 was downregulated, and FPN and FTH were upregulated after lactoferrin treatment in vivo and in vitro. Above all, the study suggested that lactoferrin can alleviate AALI by mitigating acute alcohol-induced ferroptosis. Lactoferrin may offer new strategies for the prevention or treatment of AALI.


Asunto(s)
Hierro , Lactoferrina , Lactoferrina/farmacología , Lactoferrina/uso terapéutico , Hierro/metabolismo , Animales , Ferroptosis/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratones
3.
J Hazard Mater ; 467: 133719, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38335615

RESUMEN

Sodium sulfite (SS) is a biological derivative of the air pollutant sulfur dioxide, and is often used as a food and pharmaceutical additive. Improper or excessive SS exposure in liver cell death. The phenomenon of simultaneous regulation of apoptosis, necroptosis, and pyroptosis is defined as PANoptosis. However, the specific types of programmed cell death (PCD) caused by SS and their interconnections remain unclear. In the present study, C57BL/6 mice were orally administered SS for 30 d, consecutively, to establish an in vivo mouse exposure model. AML-12 cells were treated with SS for 24 h to establish an in vitro exposure model. The results showed that SS-induced mitochondrial reactive oxygen species (mtROS) accumulation activated the BAX/Bcl-2/caspase 3 pathway to trigger apoptosis and RIPK1/RIPK3/p-MLKL to trigger necroptosis. Interestingly, ROS-activated p-MLKL perforated not the cell membrane as well as the lysosomal membrane. We determined that p-MLKL mediates lysosomal membrane permeabilization (LMP), resulting in cathepsin B (CTSB) release. Furthermore, knockdown of MLKL, a CTSB inhibitor (CA074-ME) and an NLRP3 inhibitor (MCC950) alleviated SS-induced pyroptosis. In summary, our study showed that SS induced apoptosis and necroptosis though mtROS accumulation, whereas the activation of p-MLKL mediated NLRP3-dependent pyroptosis by causing CTSB leakage through LMP. This study comprehensively explored the mechanism unerlying SS-induced PCD and provided an experimental basis for p-MLKL as a potential regulatory protein in PANoptosis.


Asunto(s)
Leucemia Mieloide Aguda , Piroptosis , Sulfitos , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Necroptosis , Ratones Endogámicos C57BL , Apoptosis , Hígado
4.
Food Chem Toxicol ; 182: 114124, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898230

RESUMEN

Excessive alcohol consumption leads to serious liver injury. Necroptosis is a programmed cell death form, which has been confirmed to be involved in alcoholic liver injury. However, the exact mechanism remains still unclear. In this study, we found that ethanol caused hepatocytes necroptosis by activating receptor-interacting serine/threonine-protein kinase 1 and 3 (RIPK1 and RIPK3). Meanwhile, autophagy was activated in ethanol-treated hepatocytes. Accumulative studies have demonstrated a possible link between autophagy and necroptosis. Microtubule-associated protein 1 light chain 3 (LC3), an autophagy marker protein, is essential for autophagosome biogenesis/maturation. But little attention has been paid to its functional role. In this study, we explored whether LC3 was involved in ethanol-induced necroptosis. The data showed that LC3 interacted with RIPK1 and RIPK3 in ethanol-treated AML12 cells and mice liver by co-immunoprecipitation (co-IP) and colocalization assay. Ethanol-induced necrosome formation and subsequent necroptosis were alleviated in hepatocytes by knockdown of LC3 or autophagy inhibitor 3-methyladenine (3-MA). These results demonstrated that LC3 accumulation facilitated the formation of necrosome by LC3-RIPK1 and LC3-RIPK3 interactions, eventually caused hepatocytes necroptosis after acute ethanol exposure. Our current research could potentially offer a new understanding of the intricate mechanisms involved in the development of acute alcoholic liver injury.


Asunto(s)
Apoptosis , Necroptosis , Ratones , Animales , Hepatocitos/metabolismo , Hígado/metabolismo , Etanol/toxicidad , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
5.
J Agric Food Chem ; 71(43): 16310-16322, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37871339

RESUMEN

Sodium sulfite is a widely used preservative in the food industry. Ferroptosis has been a newly discovered form of iron-dependent oxidative cell death in recent years. However, the potential connection between sodium sulfite and ferroptosis has not been explored. In our study, we observed the abnormal expression of ferroptosis marker protein in vivo, suggesting that sodium sulfite caused ferroptosis in vivo. Next, our study revealed that sodium sulfite caused the overproduction of mitochondrial reactive oxygen species (mtROS) in the AML-12 cells. It is well established that reactive oxygen species (ROS) can induce lysosomal membrane permeabilization. After lysosomal membrane permeabilization occurs, the outflow of Fe2+ in lysosomes triggers the Fenton reaction and subsequently results in the increase of intracellular ROS level, which is closely related to ferroptosis. As speculated, acridine orange (AO) staining and LysoTracker red staining showed that sodium sulfite-induced lysosomal membrane permeabilization could be alleviated by mtROS scavenger TEMPO. In addition, TEMPO, lysosomal stabilizer mannose, and lysosomal iron chelator deferoxamine (DFO) inhibited sodium sulfite-induced ferroptosis. Overall, the results showed that sodium sulfite induced lysosomal iron efflux through the mtROS-lysosomal membrane permeabilization pathway and eventually led to ferroptosis. Our study might provide a new mechanism for the hepatotoxicity of sodium sulfite and a theoretical basis for the risk assessment of sodium sulfite as a food additive.


Asunto(s)
Ferroptosis , Especies Reactivas de Oxígeno/metabolismo , Hierro/metabolismo , Hepatocitos/metabolismo , Lisosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA