Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 444
1.
Arthrosc Tech ; 13(5): 102944, 2024 May.
Article En | MEDLINE | ID: mdl-38835449

Revision anterior cruciate ligament (ACL) presents many technical challenges that are not commonly seen in primary ACL reconstruction. The purpose of this article is to describe an alternative technique consisting of over-the-top double-bundle ACL revision combined with lateral extra-articular tenodesis using hybrid hamstring tendon autograft-allograft. This technique provides a valid treatment option in ACL revision surgery.

2.
Bioorg Chem ; 149: 107531, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38850779

Nitroreductase (NTR) overexpression often occurs in tumors, highlighting the significance of effective NTR detection. Despite the utilization of various optical methods for this purpose, the absence of an efficient tumor-targeting optical probe for NTR detection remains a challenge. In this research, a novel tumor-targeting probe (Cy-Bio-NO2) is developed to perform dual-modal NTR detection using near-infrared fluorescence and photoacoustic techniques. This probe exhibits exceptional sensitivity and selectivity to NTR. Upon the reaction with NTR, Cy-Bio-NO2 demonstrates a distinct fluorescence "off-on" response at 800 nm, with an impressive detection limit of 12 ng/mL. Furthermore, the probe shows on-off photoacoustic signal with NTR. Cy-Bio-NO2 has been successfully employed for dual-modal NTR detection in living cells, specifically targeting biotin receptor-positive cancer cells for imaging purposes. Notably, this probe effectively detects tumor hypoxia through dual-modal imaging in tumor-bearing mice. The strategy of biotin incorporation markedly enhances the probe's tumor-targeting capability, facilitating its engagement in dual-modal imaging at tumor sites. This imaging capacity holds substantial promise as an accurate tool for cancer diagnosis.

3.
Talanta ; 276: 126227, 2024 May 10.
Article En | MEDLINE | ID: mdl-38733935

Fatty liver disease affects at least 25 percent of the population worldwide and is a severe metabolic syndrome. Viscosity is closely related to fatty liver disease, so it is urgent to develop an effective tool for monitoring viscosity. Herein, a NIR fluorescent probe called MBC-V is developed for imaging viscosity, consisting of dimethylaniline and malonitrile-benzopyran. MBC-V is non-fluorescent in low viscosity solutions due to intramolecular rotation. In high viscosity solution, the intramolecular rotation of MBC-V is suppressed and the fluorescence is triggered. MBC-V has long emission wavelength at 720 nm and large Stokes shift about 160 nm. Moreover, MBC-V can detect changes in cell viscosity in fatty liver cells, and can image the therapeutic effects of drug in fatty liver cells. By taking advantage of NIR emission, MBC-V can be used as an imaging tool for fatty liver disease and a way to evaluate the therapeutic effect of drug for fatty liver disease.

4.
Micromachines (Basel) ; 15(5)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38793187

Thin-walled bearings are widely used owing to the advantages of their light structure, high hardness, and strong load-carrying capacity. However, thin-walled bearings are often prone to deformation during the machining process, which can seriously affect the performance of the bearings. In addition, the machining deformation and quality of bearings are difficult to balance. To address the above issues, this paper investigates the effects of the machining parameters on the machining deformation, surface quality, and machining efficiency of a thin-walled bearing during the roughing stage. The dynamic balance between deformation inhibition and high quality in rough grinding was studied, and the optimal parameters for thin-walled bearing outer ring grinding were obtained. The deformation mechanism of thin-walled bearings caused by grinding was revealed through simulation and experimental analysis. The results show that the machining deformation and quality reach a balance when the workpiece speed is 55 r/min, the grinding wheel rotational speed is 2000 r/min, and the feed rate is 0.1 mm/min. Deformation increases with the increase in workpiece speed and grinding wheel speed. At the same time, the surface roughness increases with the increase in the workpiece speed, but the increase in the wheel speed will improve the surface roughness. As the workpiece speed increases, the surface topography shows a more pronounced stockpile of material, which is ameliorated by an increase in grinding wheel speed. As the rotational speed of the workpiece increases, the number of abrasive grains involved in the process per unit of time decreases, and the surface removal of the workpiece is less effective, while the increase in the rotational speed of the grinding wheel has the opposite effect. The grinding deformation of thin-walled bearings is mainly induced by machining heat and stress. As the rotational speed increases, the heat flux in the grinding zone increases. More heat flux flows into the surface of the workpiece, causing an increase in thermal stresses on the inner surface of the bearing collar, leading to greater deformation. The temperature in the grinding area can be reduced during machining, realizing a reduction in deformation. The research content contributes to the balance between high quality and low distortion in machining processes.

5.
N Engl J Med ; 390(20): 1862-1872, 2024 May 30.
Article En | MEDLINE | ID: mdl-38752650

BACKGROUND: Treatment of acute stroke, before a distinction can be made between ischemic and hemorrhagic types, is challenging. Whether very early blood-pressure control in the ambulance improves outcomes among patients with undifferentiated acute stroke is uncertain. METHODS: We randomly assigned patients with suspected acute stroke that caused a motor deficit and with elevated systolic blood pressure (≥150 mm Hg), who were assessed in the ambulance within 2 hours after the onset of symptoms, to receive immediate treatment to lower the systolic blood pressure (target range, 130 to 140 mm Hg) (intervention group) or usual blood-pressure management (usual-care group). The primary efficacy outcome was functional status as assessed by the score on the modified Rankin scale (range, 0 [no symptoms] to 6 [death]) at 90 days after randomization. The primary safety outcome was any serious adverse event. RESULTS: A total of 2404 patients (mean age, 70 years) in China underwent randomization and provided consent for the trial: 1205 in the intervention group and 1199 in the usual-care group. The median time between symptom onset and randomization was 61 minutes (interquartile range, 41 to 93), and the mean blood pressure at randomization was 178/98 mm Hg. Stroke was subsequently confirmed by imaging in 2240 patients, of whom 1041 (46.5%) had a hemorrhagic stroke. At the time of patients' arrival at the hospital, the mean systolic blood pressure in the intervention group was 159 mm Hg, as compared with 170 mm Hg in the usual-care group. Overall, there was no difference in functional outcome between the two groups (common odds ratio, 1.00; 95% confidence interval [CI], 0.87 to 1.15), and the incidence of serious adverse events was similar in the two groups. Prehospital reduction of blood pressure was associated with a decrease in the odds of a poor functional outcome among patients with hemorrhagic stroke (common odds ratio, 0.75; 95% CI, 0.60 to 0.92) but an increase among patients with cerebral ischemia (common odds ratio, 1.30; 95% CI, 1.06 to 1.60). CONCLUSIONS: In this trial, prehospital blood-pressure reduction did not improve functional outcomes in a cohort of patients with undifferentiated acute stroke, of whom 46.5% subsequently received a diagnosis of hemorrhagic stroke. (Funded by the National Health and Medical Research Council of Australia and others; INTERACT4 ClinicalTrials.gov number, NCT03790800; Chinese Trial Registry number, ChiCTR1900020534.).


Ambulances , Blood Pressure , Hypertension , Stroke , Humans , Male , Female , Aged , Middle Aged , Stroke/therapy , Hypertension/complications , Antihypertensive Agents/therapeutic use , Emergency Medical Services , Time-to-Treatment , Aged, 80 and over , Ischemic Stroke/therapy
6.
Trauma Case Rep ; 52: 101040, 2024 Aug.
Article En | MEDLINE | ID: mdl-38784218

A 28-year-old man involved in a serious motorcycle accident was admitted to our hospital with comminuted fractures of the ipsilateral femoral shaft and tibial shaft, as well as multiple fractures of the right lower limb, including the proximal fibula, medial malleolus, and the third and fourth distal metatarsals. In addition, the patient suffered a skin contusion and laceration of the right foot. On the first day of admission, this patient suddenly developed tachycardia, pyrexia, and tachypnoea, and was immediately transferred to the ICU for further treatment due to a CT-diagnosed pulmonary fat embolism (FE). As a symptomatic treatment, he received a prophylactic dose of low-molecular-weight heparin for 10 days, after which his condition improved. A Doppler ultrasound of the lower leg and a follow-up chest CT angiography were performed, which excluded any remaining thrombus and verified that the pulmonary FE had improved without deterioration. Closed-reduction and retrograde intramedullary nailing were performed for the femoral shaft fractures, while antegrade intramedullary nailing was performed for the tibial shaft fractures under general anaesthesia. In the three-year follow-up, the patient had recovered with good function of the right limb, without any respiratory discomfort. Both the femoral and tibial shaft fractures finally resolved without any further treatment. Ipsilateral femoral and tibial shaft fractures should undergo surgical stabilisation as early as possible to avoid pulmonary FEs. It is still controversial whether intramedullary nailing is suitable for floating knee injuries complicated by pulmonary FEs. However, if patients with pulmonary FEs require intramedullary nailing, we suggest that surgery should be performed after at least one week of anticoagulant use, when patient vital signs are stable and there is no sign of dyspnoea. In addition, patients should try to avoid reaming during the operation to prevent and decrease "second hit" for the lung.

7.
Anal Chem ; 96(18): 7248-7256, 2024 May 07.
Article En | MEDLINE | ID: mdl-38655839

Ferroptosis modulation is a powerful therapeutic option for pancreatic ductal adenocarcinoma (PDAC) with a low 5-year survival rate and lack of effective treatment methods. However, due to the dual role of ferroptosis in promoting and inhibiting pancreatic tumorigenesis, regulating the degree of ferroptosis is very important to obtain the best therapeutic effect of PDAC. Biothiols are suitable as biomarkers of imaging ferroptosis due to the dramatic decreases of biothiol levels in ferroptosis caused by the inhibited synthesis pathway of glutathione (GSH) and the depletion of biothiol by reactive oxygen species. Moreover, a very recent study reported that cysteine (Cys) depletion can lead to pancreatic tumor ferroptosis in mice and may be employed as an effective therapeutic strategy for PDAC. Therefore, visualization of biothiols in ferroptosis of PDAC will be helpful for regulating the degree of ferroptosis, understanding the mechanism of Cys depletion-induced pancreatic tumor ferroptosis, and further promoting the study and treatment of PDAC. Herein, two biothiol-activable near-infrared (NIR) fluorescent/photoacoustic bimodal imaging probes (HYD-BX and HYD-DX) for imaging of pancreatic tumor ferroptosis were reported. These two probes show excellent bimodal response performances for biothiols in solution, cells, and tumors. Subsequently, they have been employed successfully for real-time visualization of changes in concentration levels of biothiols during the ferroptosis process in PDAC cells and HepG2 cells. Most importantly, they have been further applied for bimodal imaging of ferroptosis in pancreatic cancer in mice, with satisfactory results. The development of these two probes provides new tools for monitoring changes in concentration levels of biothiols in ferroptosis and will have a positive impact on understanding the mechanism of Cys depletion-induced pancreatic tumor ferroptosis and further promoting the study and treatment of PDAC.


Ferroptosis , Fluorescent Dyes , Optical Imaging , Pancreatic Neoplasms , Photoacoustic Techniques , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Humans , Fluorescent Dyes/chemistry , Animals , Mice , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism , Infrared Rays , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology
8.
Mol Biol Rep ; 51(1): 385, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38438773

BACKGROUND: Glioblastoma, a highly aggressive form of brain cancer, poses significant challenges due to its resistance to therapy and high recurrence rates. This study aimed to investigate the expression and functional implications of CDKN2A, a key tumor suppressor gene, in glioblastoma cells, building upon the existing background of knowledge in this field. METHOD: Quantitative reverse transcription PCR (qRT-PCR) analysis was performed to evaluate CDKN2A expression in U87 glioblastoma cells compared to normal human astrocytes (NHA). CDKN2A expression levels were manipulated using small interfering RNA (siRNA) and CDKN2A overexpression vector. Cell viability assays and carmustine sensitivity tests were conducted to assess the impact of CDKN2A modulation on glioblastoma cell viability and drug response. Sphere formation assays and western blot analysis were performed to investigate the role of CDKN2A in glioblastoma stem cell (GSC) self-renewal and pluripotency marker expression. Additionally, methylation-specific PCR (MSP) assays and demethylation treatment were employed to elucidate the mechanism of CDKN2A downregulation in U87 cells. RESULT: CDKN2A expression was significantly reduced in glioblastoma cells compared to NHA. CDKN2A overexpression resulted in decreased cell viability and enhanced sensitivity to carmustine treatment. CDKN2A inhibition promoted self-renewal capacity and increased pluripotency marker expression in U87 cells. CDKN2A upregulation led to elevated protein levels of p16INK4a, p14ARF, P53, and P21, which are involved in cell cycle regulation. CDKN2A downregulation in U87 cells was associated with high promoter methylation, which was reversed by treatment with a demethylating agent. CONCLUSION: Our findings demonstrate that CDKN2A downregulation in glioblastoma cells is associated with decreased cell viability, enhanced drug resistance, increased self-renewal capacity, and altered expression of pluripotency markers. The observed CDKN2A expression changes are mediated by promoter methylation. These results highlight the potential role of CDKN2A as a therapeutic target and prognostic marker in glioblastoma.


Carmustine , Glioblastoma , Humans , Carmustine/pharmacology , Glioblastoma/drug therapy , Glioblastoma/genetics , Stem Cells , Genes, p16 , Methylation , Cyclin-Dependent Kinase Inhibitor p16/genetics
9.
J Colloid Interface Sci ; 663: 609-623, 2024 Jun.
Article En | MEDLINE | ID: mdl-38430831

The matching of long cycle life, high power density, and high energy density has been an inevitable requirement for the development of efficient anode materials for lithium-ion capacitors (LICs). Here, we introduce an N-doped carbon nanotube hollow polyhedron structure (Co3O4-CNT-800) with high specific surface area and active sites, which is anchored with two-dimensional (2D) Ti3C2Tx nanosheets with metallic conductivity and abundant surface functional groups by electrostatic adsorption to form a hierarchical multilevel hollow semi-covered framework structure. Benefiting from the synergistic effect between Co3O4-CNT-800 and Ti3C2Tx, the composites exhibit superior energy storage efficiency and long cycling stability. The Co3O4-CNT-800/Ti3C2Tx electrodes exhibit a high specific capacity of 817C/g at a current density of 0.5 A/g under the three-electrode system, and the capacity retention rate is 91 % after 5000 cycles at a current density of 2 A/g. Additionally, we assembled Co3O4-CNT-800/Ti3C2Tx as the anode and Activated carbon (AC) cathode to form LIC devices, which showed an electrochemical test result of 90.01 % capacitance retention after 8000 cycles at 2 A/g, and the maximum power density of the LIC was 3000 W/kg and the maximum energy density was 121 Wh/kg. This work pioneered the combination of N-doped carbon nanotube hollow polyhedron structure with two-dimensional Ti3C2Tx, which provides an effective strategy for preparing LIC negative electrode materials with high specific capacitance and long cycling stability.

10.
Sensors (Basel) ; 24(3)2024 Jan 30.
Article En | MEDLINE | ID: mdl-38339620

Segmented plane mirrors constitute a crucial component in the self-aligned detection process for large-aperture space optical imaging systems. Surface shape errors inherent in segmented plane mirrors primarily manifest as tilt errors and piston errors between sub-mirrors. While the detection and adjustment techniques for tilt errors are well-established, addressing piston errors poses a more formidable challenge. This study introduces a novel approach to achieve long-range, high-precision, and efficient co-phase detection of segmented plane mirrors by proposing a segmented plane mirror shape detection method based on grazing incidence interferometry. This method serves to broaden the detection range of piston errors, mitigate the issue of the 2π ambiguity resulting from piston errors in co-phase detection, and extend the detection capabilities of the interferometer. By manipulating the incident angle of the interferometer, both rough and precise adjustments of the segmented plane mirrors can be effectively executed.

11.
Sensors (Basel) ; 24(4)2024 Feb 11.
Article En | MEDLINE | ID: mdl-38400349

The attainment of a substantial aperture in the rotating synthetic aperture imaging system involves the rotation of a slender rectangular primary mirror. This constitutes a pivotal avenue of exploration in space telescope research. Due to the considerable aspect ratio of the primary mirror, environmental disturbances can significantly impact its surface shape. Active optical technology can rectify surface shape irregularities through the detection of wavefront information. The Phase Diversity (PD) method utilizes images captured by the imaging system to compute wavefront information. In this study, the PD method is applied to rotating synthetic and other rectangular aperture imaging systems, employing Legendre polynomials to model the wavefront. The study delved into the ramifications stemming from the aperture aspect ratio and aberration size.

12.
Dement Geriatr Cogn Disord ; 53(2): 74-82, 2024.
Article En | MEDLINE | ID: mdl-38408448

INTRODUCTION: Previous studies have indicated a correlation between perceived stress and cognitive decline. However, it remains unknown whether high levels of perceived stress can result in motoric cognitive risk (MCR) syndrome. This study investigated the relationship between perceived stress and MCR in a community-based population. METHODS: The study cohort comprised 852 elderly individuals from the Rugao Longitudinal Aging Cohort. Perceived stress was assessed using the 10-item Perceived Stress Scale (PSS-10), while MCR was defined as the coexistence of subjective memory complaints (SMCs) and slow gait speed. RESULTS: The average age of the study participants is 79.84 ± 4.34 years. The mean score of PSS-10 among participants is 10.32 (range = 0-33; [SD] = 5.71), with a median score of 10.00 (6.00, 14.00). The prevalence of MCR is 9.3%. In the logistic regression analysis, for each 1-SD (5.71) increase in the global PSS-10 score, the risk of MCR increased by 40% (95% CI 1.09-1.80). Additionally, in the aspect of two components of MCR, with a 1-SD increase (5.71) in the global PSS-10 score, there was a 50% (95% CI 1.29-1.75) increase in the risk of SMCs and a 27% (95% CI 1.04-1.55) increase in the risk of slow gait speed. In terms of specific walking speed, there was a reverse correlation between the global PSS-10 score and walking speed (r = -0.14, p < 0.001). CONCLUSIONS: This study provided preliminary evidence that high levels of perceived stress were associated with the risk of MCR in a community-dwelling population.


Aging , Cognitive Dysfunction , Stress, Psychological , Humans , Male , Aged , Female , Stress, Psychological/epidemiology , Stress, Psychological/psychology , Aged, 80 and over , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/psychology , Aging/physiology , Aging/psychology , Longitudinal Studies , Walking Speed , Longevity , Risk Factors , Prevalence , Cohort Studies , Memory Disorders/epidemiology , Memory Disorders/psychology , Neuropsychological Tests
13.
Cell Res ; 34(4): 281-294, 2024 Apr.
Article En | MEDLINE | ID: mdl-38200278

Plant survival requires an ability to adapt to differing concentrations of nutrient and toxic soil ions, yet ion sensors and associated signaling pathways are mostly unknown. Aluminum (Al) ions are highly phytotoxic, and cause severe crop yield loss and forest decline on acidic soils which represent ∼30% of land areas worldwide. Here we found an Arabidopsis mutant hypersensitive to Al. The gene encoding a leucine-rich-repeat receptor-like kinase, was named Al Resistance1 (ALR1). Al ions binding to ALR1 cytoplasmic domain recruits BAK1 co-receptor kinase and promotes ALR1-dependent phosphorylation of the NADPH oxidase RbohD, thereby enhancing reactive oxygen species (ROS) generation. ROS in turn oxidatively modify the RAE1 F-box protein to inhibit RAE1-dependent proteolysis of the central regulator STOP1, thus activating organic acid anion secretion to detoxify Al. These findings establish ALR1 as an Al ion receptor that confers resistance through an integrated Al-triggered signaling pathway, providing novel insights into ion-sensing mechanisms in living organisms, and enabling future molecular breeding of acid-soil-tolerant crops and trees, with huge potential for enhancing both global food security and forest restoration.


Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Aluminum/metabolism , Reactive Oxygen Species/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Ions , Soil , Gene Expression Regulation, Plant , Transcription Factors/metabolism
14.
J Ultrasound Med ; 43(4): 643-655, 2024 Apr.
Article En | MEDLINE | ID: mdl-38224522

The use of low-intensity pulsed ultrasound (LIPUS) for promoting fracture healing has been Food and Drug Administration (FDA)-approved since 1994 due to largely its non-thermal effects of sound flow sound radiation force and so on. Numerous clinical and animal studies have shown that LIPUS can accelerate the healing of fresh fractures, nonunions, and delayed unions in pulse mode regardless of LIPUS devices or circumstantial factors. Rare clinical studies show limitations of LIPUS for treating fractures with intramedullary nail fixation or low patient compliance. The biological effect is achieved by regulating various cellular behaviors involving mesenchymal stem/stromal cells (MSCs), osteoblasts, chondrocytes, and osteoclasts and with dose dependency on LIPUS intensity and time. Specifically, LIPUS promotes the osteogenic differentiation of MSCs through the ROCK-Cot/Tpl2-MEK-ERK signaling. Osteoblasts, in turn, respond to the mechanical signal of LIPUS through integrin, angiotensin type 1 (AT1), and PIEZO1 mechano-receptors, leading to the production of inflammatory factors such as COX-2, MCP-1, and MIP-1ß fracture repair. LIPUS also induces CCN2 expression in chondrocytes thereby coordinating bone regeneration. Finally, LIPUS suppresses osteoclast differentiation and gene expression by interfering with the ERK/c-Fos/NFATc1 cascade. This mini-review revisits the known effects and mechanisms of LIPUS on bone fracture healing and strengthens the need for further investigation into the underlying mechanisms.


Fractures, Bone , Ultrasonic Therapy , Animals , Humans , Fracture Healing/physiology , Osteogenesis , Ultrasonic Waves , Ion Channels
15.
Appl Opt ; 63(3): 838-845, 2024 Jan 20.
Article En | MEDLINE | ID: mdl-38294399

We formulated a gravity unloading strategy for a monolithic silicon carbide (SiC) mirror with a Φ3m aperture in space. Employing the finite element analysis (FEA) technique, a rapid solution analytical approach for determining optimal support forces during gravity unloading is introduced. This method demonstrates enhanced efficiency and accuracy compared to conventional approaches. A quantitative evaluation methodology for the gravity release error, grounded in the minimum-energy mode, is delineated. The adverse impacts could be expeditiously computed by assessing the maximum deflection of minimum-energy modes generated by various errors. The analytical findings revealed that compliance with the stipulated gravity release error criterion of less than 6 nm (root-mean-square) necessitated the gravity unloading force error to fall within the range of ±0.1N. Additionally, the gravity unloading support position error was required to be within Φ0.5m m, and the measurement error pertaining to the rib thickness of the actual mirror blank had to be within ±0.02m m.

16.
Sensors (Basel) ; 24(2)2024 Jan 09.
Article En | MEDLINE | ID: mdl-38257483

With the continuous operation of analog circuits, the component degradation problem gradually comes to the forefront, which may lead to problems, such as circuit performance degradation, system stability reductions, and signal quality degradation, which could be particularly evident in increasingly complex electronic systems. At the same time, due to factors, such as continuous signal transformation, the fluctuation of component parameters, and the nonlinear characteristics of components, traditional fault localization methods are still facing significant challenges when dealing with large-scale complex circuit faults. Based on this, this paper proposes a fault-diagnosis method for analog circuits using the ECWGEO algorithm, an enhanced version of the GEO algorithm, to de-optimize the 1D-CNN with an attention mechanism to handle time-frequency fusion inputs. Firstly, a typical circuit-quad op-amp dual second-order filter circuit is selected to construct a fault-simulation model, and Monte Carlo analysis is used to obtain a large number of samples as the dataset of this study. Secondly, the 1D-CNN network structure is improved for the characteristics of the analog circuits themselves, and the time-frequency domain fusion input is implemented before inputting it into the network, while the attention mechanism is introduced into the network. Thirdly, instead of relying on traditional experience for network structure determination, this paper adopts a parameter-optimization algorithm for network structure optimization and improves the GEO algorithm according to the problem characteristics, which enhances the diversity of populations in the late stage of its search and accelerates the convergence speed. Finally, experiments are designed to compare the results in different dimensions, and the final proposed structure achieved a 98.93% classification accuracy, which is better than other methods.

17.
Anal Chim Acta ; 1285: 342024, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38057061

As a basic parameter of the intracellular microenvironment, viscosity is closely related to the development of cancer. Thus, it is necessary to utilize a sensitive tool to visualize the viscosity in tumor cells and mice, which is helpful for the diagnosis of cancer. Herein, a novel dual-modal probe (IX-V) that has a near-infrared fluorescence (NIRF) and photoacoustic (PA) response to viscosity is synthesized. In low viscosity media, the probe has no fluorescence. With the increase of viscosity, the fluorescence is produced in the near-infrared region due to the inhibition of the TICT process. At the same time, the probe shows different photoacoustic (PA) signals in different viscosity media. Most notably, the viscosity in tumor cells has been imaged successfully by the application of IX-V, and the probe can effectively distinguish cancer cells from normal cells co-cultured in one dish by the difference of fluorescence intensity. In addition, the probe has been used for dual-modal imaging (NIRF and PA) of viscosity in tumor mice, which provides a tool for exploring the relationship between viscosity and diseases. That is to say, IX-V can achieve complementary imaging effects and has great application prospects in the tumor diagnosis.


Fluorescent Dyes , Neoplasms , Mice , Animals , Viscosity , Cell Line, Tumor , Fluorescence , Optical Imaging/methods , Neoplasms/diagnostic imaging
18.
BMC Surg ; 23(1): 379, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38093270

BACKGROUND: To determine the clinical efficacy of rotator cuff suture and arthroscopic 360° capsular release in patients with rotator cuff tendinopathy to improve the Constant-Murley and Visual Analogue Scale (VAS) scores, and shoulder flexion. METHODS: Fifty-one patients with full-thickness rotator cuff tears and limited shoulder movement who were admitted to our hospital from October 2017 to October 2020 were selected; all patients were treated with arthroscopic rotator cuff suture and 360° capsular release. The Constant-Murley score, VAS score, and shoulder flexion angle were used to evaluate shoulder joint function before and during follow-up. Rotator cuff healing was assessed by MRI with the Sugaya classification. RESULTS: After treatment, the Constant-Murley score (58.98 ± 9.84) was significantly improved compared with pre-treatment (29.33 ± 9.71), the VAS score (1.23 ± 0.87) was significantly lower than pre-treatment (7.54 ± 1.22), and the shoulder flexion angle (142.67 ± 8.59°) was significantly improved compared with pre-treatment (51.50 ± 2.10°); the difference was statistically significant (P < 0.05). CONCLUSIONS: Arthroscopic rotator cuff suture and simultaneous 360° capsular release have a significant effect on the treatment of rotator cuff tear with limited shoulder movement.


Rotator Cuff Injuries , Shoulder Joint , Humans , Rotator Cuff/surgery , Rotator Cuff Injuries/surgery , Shoulder/surgery , Joint Capsule Release , Shoulder Joint/surgery , Arthroscopy , Treatment Outcome , Range of Motion, Articular , Sutures
19.
Brain Behav ; 13(12): e3307, 2023 12.
Article En | MEDLINE | ID: mdl-37934082

OBJECTIVE: Compared logistic regression (LR) with machine learning (ML) models, to predict the risk of ischemic stroke in an elderly population in China. METHODS: We applied 2208 records from the Rugao Longitudinal Ageing Study (RLAS) for ischemic stroke risk prediction assessment. Input variables included 103 phenotypes. For 3-year ischemic stroke risk prediction, we compared the discrimination and calibration of LR model and ML methods, where ML methods include Random Forest (RF), Gaussian kernel Support Vector Machines (SVM), Multilayer perceptron (MLP), K-Nearest Neighbors Algorithm (KNN), and Gradient Boosting Decision Tree (GBDT) to develop an ischemic stroke risk prediction model. RESULTS: Age, pulse, waist circumference, education level, ß2-microglobulin, homocysteine, cystatin C, folate, free triiodothyronine, platelet distribution width, QT interval, and QTc interval were significant induced predictors of ischemic stroke. For ischemic stroke prediction, the ML approach was able to tap more biochemical and ECG-related multidimensional phenotypic indicators compared to the LR model, which placed more importance on general demographic indicators. Compared to the LR model, SVM provided the best discrimination and calibration (C-index: 0.79 vs. 0.71, 11.27% improvement in model utility), with the best performance in both validation and test data. CONCLUSION: In a comparison of LR with five ML models, the accuracy of ischemic stroke prediction was higher by combining ML with multiple phenotypes. Combined with other studies based on elderly populations in China, ML techniques, especially SVM, have shown good long-term predictive performance, inspiring the potential value of ML use in clinical practice.


Ischemic Stroke , Humans , Aged , Aging , Algorithms , China/epidemiology , Machine Learning
20.
Anal Chem ; 95(48): 17559-17567, 2023 12 05.
Article En | MEDLINE | ID: mdl-37994418

Cysteine is an important biological thiol and is closely related to cancer. It remains a challenge to develop a probe that can provide long-term fluorescence detection and imaging of Cys in cells as well as in living organisms. Here, a solid-state fluorophore HTPQ is combined with an acrylate group to construct a solid-state fluorescent probe HTPQC for Cys recognition. The fluorescence of the probe is quenched when the photoinduced electron transfer (PET) process is turned on and the excited-state intramolecular proton transfer (ESIPT) process is turned off. In the presence of Cys, an obvious solid-state fluorescence signal can be observed. The double quenching mechanism makes the probe HTPQC have the advantages of high sensitivity, good selectivity, and high contrast of biological imaging. Due to low cytotoxicity, the probe HTPQC can be used to detect exogenous and endogenous Cys in living cells and is capable of imaging over long periods of time. By making full use of long wavelengths, the probe can be applied for the detection of Cys levels in tumor mice and equipped with the ability to conduct long-term imaging in vivo.


Cysteine , Fluorescent Dyes , Humans , Animals , Mice , Fluorescent Dyes/toxicity , HeLa Cells , Sulfhydryl Compounds , Protons
...