Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2400970, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838184

RESUMEN

Natural killer (NK) cells, serve as the frontline defense of the immune system, and are capable of surveilling and eliminating tumor cells. Their significance in tumor immunotherapy has garnered considerable attention in recent years. However, the absence of specific receptor-ligand interactions between NK cells and tumor cells hampers their selectivity, thereby limiting the therapeutic effectiveness of NK cell-based tumor immunotherapy. Herein, this work constructs polymannose-engineered NK (pM-NK) cells via metabolic glycoengineering and copper-free click chemistry. Polymannose containing dibenzocyclooctyne terminal groups (pM-DBCO) is synthesized and covalently modified on the surface of azido-labeled NK cells. Compared to the untreated NK cells, the interactions between pM-NK cells and MDA-MB-231 cells, a breast tumor cell line with overexpression of mannose receptors (MRs), are significantly increased, and lead to significantly enhanced killing efficacy. Consequently, intravenous administration of pM-NK cells will effectively inhibit the tumor growth and will prolong the survival of mice bearing MDA-MB-231 tumors. Thus, this work presents a novel strategy for tumor-targeting NK cell-based tumor immunotherapy.

2.
ACS Appl Mater Interfaces ; 16(8): 10671-10681, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38359324

RESUMEN

The present zwitterionic hydrogel-based wearable sensor exhibits various limitations, such as limited degradation capacity, unavoidable toxicity resulting from initiators, and poor mechanical properties that cannot satisfy practical demands. Herein, we present an initiator and crosslinker-free approach to prepare polyethylene glycol (PEG)@poly[2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl) (PSBMA) interpenetrating polymer network (IPN) hydrogels that are self-polymerized via sunlight-induced and non-covalent crosslinking through electrostatic interaction and hydrogen bonding among polymer chains. The PEG@PSBMA IPN hydrogel possesses tissue-like softness, superior stretchability (∼2344.6% elongation), enhanced fracture strength (∼39.5 kPa), excellent biocompatibility, antibacterial property, reliable adhesion, and ionic conductivity. Furthermore, the sensor based on the IPN hydrogel demonstrates good sensitivity and cyclic stability, enabling effective real-time monitoring of human body activities. Moreover, it is worth noting that the excellent degradability in the saline solution within 8 h makes the prepared hydrogel-based wearable sensor free from the electronic device contamination. We believe that the proposed strategy for preparing physical zwitterionic hydrogels will pave the way for fabricating eco-friendly wearable devices.


Asunto(s)
Antibacterianos , Materiales Biocompatibles , Humanos , Contaminación de Medicamentos , Conductividad Eléctrica , Hidrogeles , Polímeros
3.
ACS Macro Lett ; 13(3): 273-279, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38345474

RESUMEN

The immune system can recognize and respond to pathogens of various shapes. Synthetic materials that can change their shape have the potential to be used in vaccines and immune regulation. The ability of supramolecular assemblies to undergo reversible transformations in response to environmental stimuli allows for dynamic changes in their shapes and functionalities. A meticulously designed oligo(azobenzene-graft-mannose) was synthesized using a stepwise iterative method and "click" chemistry. This involved integrating hydrophobic and photoresponsive azobenzene units with hydrophilic and bioactive mannose units. The resulting oligomer, with its precise structure, displayed versatile assembly morphologies and chiralities that were responsive to light. These varying assembly morphologies demonstrated distinct capabilities in terms of inhibiting the proliferation of cancer cells and stimulating the maturation of dendritic cells. These discoveries contribute to the theoretical comprehension and advancement of photoswitchable bioactive materials.


Asunto(s)
Compuestos Azo , Manosa , Compuestos Azo/química , Química Clic , Interacciones Hidrofóbicas e Hidrofílicas
4.
Gene ; 809: 146042, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34715303

RESUMEN

Genetic diversity, kinship and population genetic structure analyses of Gossypium hirsutum germplasm can provide a better understanding of the origin and evolution of G. hirsutum biodiversity. In this study, adopt 273 elite upland cotton cultivar accessions collected from around the world, and especially from China to get 1,313,331 SNP molecular markers, it were used to construct a phylogenetic tree of each sample using MEGAX, to perform population structure analysis by ADMIXTURE software and principal component analysis (PCA) by EIGENSOFT software, and to estimate relatedness using SPAGeDi. ADMIXTURE software divided the experimental cotton population into 16 subgroups, and the Gossypium hirsutum samples could be roughly clustered according to source place, but there were some overlapping characteristics among samples. The experimental cotton population was divided into six groups according to source to calculate the genetic diversity index (H), and the obtained value (0.306) was close to that for germplasm collected by others in China. Cluster 4 had a relatively high genetic diversity level (0.390). The degrees of genetic differentiation within the experimental cotton population groups were low (the population differentiation indexes ranged from 0.02368 to 0.10664). The genetic distance among cotton accessions varied from 0.000332651 to 0.562664014, with an average of 0.25240429. The results of this study may provide a basis for mining elite alleles and using them for subsequent association analysis.


Asunto(s)
Genética de Población , Gossypium/genética , Filogenia , Polimorfismo de Nucleótido Simple , China , Variación Genética
5.
Genetica ; 145(4-5): 409-416, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28755130

RESUMEN

Cotton (Gossypium spp.) is the most important natural textile fiber crop, and Gossypium hirsutum L. is responsible for 90% of the annual cotton crop in the world. Information on cotton genetic diversity and population structure is essential for new breeding lines. In this study, we analyzed population structure and genetic diversity of 288 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China, using genome-wide single nucleotide polymorphisms (SNP) markers. The average polymorphsim information content (PIC) was 0.25, indicating a relatively low degree of genetic diversity. Population structure analysis revealed extensive admixture and identified three subgroups. Phylogenetic analysis supported the subgroups identified by STRUCTURE. The results from both population structure and phylogenetic analysis were, for the most part, in agreement with pedigree information. Analysis of molecular variance revealed a larger amount of variation was due to diversity within the groups. Establishment of genetic diversity and population structure from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in upland cotton.


Asunto(s)
Variación Genética , Gossypium/genética , China , Fibra de Algodón , Marcadores Genéticos , Genética de Población , Genoma de Planta , Genotipo , Polimorfismo de Nucleótido Simple , Semillas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...