Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 84
1.
Int J Biol Macromol ; 267(Pt 2): 131662, 2024 May.
Article En | MEDLINE | ID: mdl-38636754

In this study, we investigated detailedly the contribution of catechol in tuning the formation and adhesive properties of coacervates. We have constructed a series of catechol-grafted Chitosan (Chitosan-C), and investigated their coacervation with gum arabic (GA) and the corresponding adhesion. We demonstrate that, increasing catechol grafting ratio from 0 %-44 % impacted the coacervation moderately, while enhanced the adhesion of the coacervate up to 438 % when the catechol faction was 37 %. Further increasing the grafting ratio to 55 % led to precipitated coacervates associated with a declined adhesion. Our findings identify the optimal grafting threshold for coacervation and adhesion, providing insights into the underlying mechanism of coacervate binding. Moreover, the catechol enhancement on adhesion of coacervates tolerates different substrates and diverse polyelectrolyte pairs. The revealed principles shall be helpful for designing adhesive coacervates and boosting their applications in various industrial and biomedical areas.


Catechols , Chitosan , Chitosan/chemistry , Catechols/chemistry , Gum Arabic/chemistry , Adhesiveness , Adhesives/chemistry
2.
Science ; 383(6685): eadj2609, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38305684

Insects rely on a family of seven transmembrane proteins called gustatory receptors (GRs) to encode different taste modalities, such as sweet and bitter. We report structures of Drosophila sweet taste receptors GR43a and GR64a in the apo and sugar-bound states. Both GRs form tetrameric sugar-gated cation channels composed of one central pore domain (PD) and four peripheral ligand-binding domains (LBDs). Whereas GR43a is specifically activated by the monosaccharide fructose that binds to a narrow pocket in LBDs, disaccharides sucrose and maltose selectively activate GR64a by binding to a larger and flatter pocket in LBDs. Sugar binding to LBDs induces local conformational changes, which are subsequently transferred to the PD to cause channel opening. Our studies reveal a structural basis for sugar recognition and activation of GRs.


Drosophila Proteins , Drosophila melanogaster , Sugars , Taste Perception , Taste , Animals , Taste/physiology , Taste Perception/physiology , Drosophila melanogaster/physiology , Drosophila Proteins/chemistry , Protein Conformation
3.
Nat Chem Biol ; 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38355723

Major depressive disorder, a prevalent and severe psychiatric condition, necessitates development of new and fast-acting antidepressants. Genetic suppression of astrocytic inwardly rectifying potassium channel 4.1 (Kir4.1) in the lateral habenula ameliorates depression-like phenotypes in mice. However, Kir4.1 remains an elusive drug target for depression. Here, we discovered a series of Kir4.1 inhibitors through high-throughput screening. Lys05, the most potent one thus far, effectively suppressed native Kir4.1 channels while displaying high selectivity against established targets for rapid-onset antidepressants. Cryogenic-electron microscopy structures combined with electrophysiological characterizations revealed Lys05 directly binds in the central cavity of Kir4.1. Notably, a single dose of Lys05 reversed the Kir4.1-driven depression-like phenotype and exerted rapid-onset (as early as 1 hour) antidepressant actions in multiple canonical depression rodent models with efficacy comparable to that of (S)-ketamine. Overall, we provided a proof of concept that Kir4.1 is a promising target for rapid-onset antidepressant effects.

4.
Mol Plant ; 17(3): 409-422, 2024 03 04.
Article En | MEDLINE | ID: mdl-38335958

Plant high-affinity K+ transporters (HKTs) mediate Na+ and K+ uptake, maintain Na+/K+ homeostasis, and therefore play crucial roles in plant salt tolerance. In this study, we present cryoelectron microscopy structures of HKTs from two classes, class I HKT1;1 from Arabidopsis thaliana (AtHKT1;1) and class II HKT2;1 from Triticum aestivum (TaHKT2;1), in both Na+- and K+-bound states at 2.6- to 3.0-Å resolutions. Both AtHKT1;1 and TaHKT2;1 function as homodimers. Each HKT subunit consists of four tandem domain units (D1-D4) with a repeated K+-channel-like M-P-M topology. In each subunit, D1-D4 assemble into an ion conduction pore with a pseudo-four-fold symmetry. Although both TaHKT2;1 and AtHKT1;1 have only one putative Na+ ion bound in the selectivity filter with a similar coordination pattern, the two HKTs display different K+ binding modes in the filter. TaHKT2;1 has three K+ ions bound in the selectivity filter, but AtHKT1;1 has only two K+ ions bound in the filter, which has a narrowed external entrance due to the presence of a Ser residue in the first filter motif. These structures, along with computational, mutational, and electrophysiological analyses, enable us to pinpoint key residues that are critical for the ion selectivity of HKTs. The findings provide new insights into the ion selectivity and ion transport mechanisms of plant HKTs and improve our understanding about how HKTs mediate plant salt tolerance and enhance crop growth.


Arabidopsis Proteins , Arabidopsis , Symporters , Arabidopsis Proteins/metabolism , Cryoelectron Microscopy , Arabidopsis/metabolism , Ion Transport , Ions/metabolism , Potassium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Nat Plants ; 10(1): 180-191, 2024 01.
Article En | MEDLINE | ID: mdl-38172575

Cytokinins are essential for plant growth and development, and their tissue distributions are regulated by transmembrane transport. Recent studies have revealed that members of the 'Aza-Guanine Resistant' (AZG) protein family from Arabidopsis thaliana can mediate cytokinin uptake in roots. Here we present 2.7 to 3.3 Å cryo-electron microscopy structures of Arabidopsis AZG1 in the apo state and in complex with its substrates trans-zeatin (tZ), 6-benzyleaminopurine (6-BAP) or kinetin. AZG1 forms a homodimer and each subunit shares a similar topology and domain arrangement with the proteins of the nucleobase/ascorbate transporter (NAT) family. These structures, along with functional analyses, reveal the molecular basis for cytokinin recognition. Comparison of the AZG1 structures determined in inward-facing conformations and predicted by AlphaFold2 in the occluded conformation allowed us to propose that AZG1 may carry cytokinins across the membrane through an elevator mechanism.


Arabidopsis Proteins , Arabidopsis , Cytokinins/metabolism , Arabidopsis/metabolism , Cryoelectron Microscopy , Arabidopsis Proteins/metabolism , Membrane Transport Proteins/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant
6.
Nat Chem Biol ; 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38167918

Pharmacological activation of voltage-gated ion channels by ligands serves as the basis for therapy and mainly involves a classic gating mechanism that augments the native voltage-dependent open probability. Through structure-based virtual screening, we identified a new scaffold compound, Ebio1, serving as a potent and subtype-selective activator for the voltage-gated potassium channel KCNQ2 and featuring a new activation mechanism. Single-channel patch-clamp, cryogenic-electron microscopy and molecular dynamic simulations, along with chemical derivatives, reveal that Ebio1 engages the KCNQ2 activation by generating an extended channel gate with a larger conductance at the saturating voltage (+50 mV). This mechanism is different from the previously observed activation mechanism of ligands on voltage-gated ion channels. Ebio1 caused S6 helices from residues S303 and F305 to perform a twist-to-open movement, which was sufficient to open the KCNQ2 gate. Overall, our findings provide mechanistic insights into the activation of KCNQ2 channel by Ebio1 and lend support for KCNQ-related drug development.

7.
Biochem Biophys Res Commun ; 689: 149218, 2023 12 31.
Article En | MEDLINE | ID: mdl-37976835

KCNQ (Kv7) channels are voltage-gated, phosphatidylinositol 4,5-bisphosphate- (PIP2-) modulated potassium channels that play essential roles in regulating the activity of neurons and cardiac myocytes. Hundreds of mutations in KCNQ channels are closely related to various cardiac and neurological disorders, such as long QT syndrome, epilepsy, and deafness, which makes KCNQ channels important drug targets. During the past several years, the application of single-particle cryo-electron microscopy (cryo-EM) technique in the structure determination of KCNQ channels has greatly advanced our understanding of their molecular mechanisms. In this review, we summarize the currently available structures of KCNQ channels, analyze their special voltage gating mechanism, and discuss their activation mechanisms by both the endogenous membrane lipid and the exogenous synthetic ligands. These structural studies of KCNQ channels will guide the development of drugs targeting KCNQ channels.


Epilepsy , Long QT Syndrome , Humans , KCNQ Potassium Channels/genetics , KCNQ Potassium Channels/chemistry , Cryoelectron Microscopy , Heart , Long QT Syndrome/genetics
8.
Nat Commun ; 14(1): 6632, 2023 10 19.
Article En | MEDLINE | ID: mdl-37857637

The human voltage-gated potassium channel KCNQ2/KCNQ3 carries the neuronal M-current, which helps to stabilize the membrane potential. KCNQ2 can be activated by analgesics and antiepileptic drugs but their activation mechanisms remain unclear. Here we report cryo-electron microscopy (cryo-EM) structures of human KCNQ2-CaM in complex with three activators, namely the antiepileptic drug cannabidiol (CBD), the lipid phosphatidylinositol 4,5-bisphosphate (PIP2), and HN37 (pynegabine), an antiepileptic drug in the clinical trial, in an either closed or open conformation. The activator-bound structures, along with electrophysiology analyses, reveal the binding modes of two CBD, one PIP2, and two HN37 molecules in each KCNQ2 subunit, and elucidate their activation mechanisms on the KCNQ2 channel. These structures may guide the development of antiepileptic drugs and analgesics that target KCNQ2.


Analgesics , Anticonvulsants , Humans , Anticonvulsants/pharmacology , Cryoelectron Microscopy , Ligands , Membrane Potentials , KCNQ2 Potassium Channel/chemistry , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/metabolism
10.
Cell Rep ; 42(5): 112417, 2023 05 30.
Article En | MEDLINE | ID: mdl-37074913

The P-type ATPase ATP7B exports cytosolic copper and plays an essential role in the regulation of cellular copper homeostasis. Mutants of ATP7B cause Wilson disease (WD), an autosomal recessive disorder of copper metabolism. Here, we present cryoelectron microscopy (cryo-EM) structures of human ATP7B in the E1 state in the apo, the putative copper-bound, and the putative cisplatin-bound forms. In ATP7B, the N-terminal sixth metal-binding domain (MBD6) binds at the cytosolic copper entry site of the transmembrane domain (TMD), facilitating the delivery of copper from the MBD6 to the TMD. The sulfur-containing residues in the TMD of ATP7B mark the copper transport pathway. By comparing structures of the E1 state human ATP7B and E2-Pi state frog ATP7B, we propose the ATP-driving copper transport model of ATP7B. These structures not only advance our understanding of the mechanisms of ATP7B-mediated copper export but can also guide the development of therapeutics for the treatment of WD.


Cation Transport Proteins , Hepatolenticular Degeneration , Humans , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Copper/metabolism , Copper Transport Proteins , Copper-Transporting ATPases/genetics , Copper-Transporting ATPases/metabolism , Cryoelectron Microscopy , Hepatolenticular Degeneration/metabolism
11.
EMBO J ; 42(11): e112940, 2023 06 01.
Article En | MEDLINE | ID: mdl-37038975

The peptide hormone angiotensin II regulates blood pressure mainly through the type 1 angiotensin II receptor AT1 R and its downstream signaling proteins Gq and ß-arrestin. AT1 R blockers, clinically used as antihypertensive drugs, inhibit both signaling pathways, whereas AT1 R ß-arrestin-biased agonists have shown great potential for the treatment of acute heart failure. Here, we present a cryo-electron microscopy (cryo-EM) structure of the human AT1 R in complex with a balanced agonist, Sar1 -AngII, and Gq protein at 2.9 Å resolution. This structure, together with extensive functional assays and computational modeling, reveals the molecular mechanisms for AT1 R signaling modulation and suggests that a major hydrogen bond network (MHN) inside the receptor serves as a key regulator of AT1 R signal transduction from the ligand-binding pocket to both Gq and ß-arrestin pathways. Specifically, we found that the MHN mutations N1113.35 A and N2947.45 A induce biased signaling to Gq and ß-arrestin, respectively. These insights should facilitate AT1 R structure-based drug discovery for the treatment of cardiovascular diseases.


Angiotensin II , Signal Transduction , Humans , Cryoelectron Microscopy , Signal Transduction/physiology , beta-Arrestins/metabolism , Angiotensin II/chemistry , Angiotensin II/metabolism , Angiotensin II/pharmacology , Receptors, Angiotensin/metabolism
12.
Sci Rep ; 13(1): 3710, 2023 Mar 06.
Article En | MEDLINE | ID: mdl-36878950

Substantial efforts are directed into exploring the structure-properties relationships of photoluminescent Carbon dots (C-dots). This study unravels a resculpting mechanism in C-dots that is triggered by electrochemical etching and proceeds via extensive surface oxidation and carbon-carbon breakage. The process results in the gradual shrinkage of the nanoparticles and can enhance the quantum yield by more than half order of magnitude compared to the untreated analogues.

13.
Front Pharmacol ; 14: 1055363, 2023.
Article En | MEDLINE | ID: mdl-36950008

Introduction: Oral Banzhilian formula (BZLF) is effective in the clinical treatment of psoriasis. However, the effectiveness and mechanism of different drug delivery routes deserve further study. Methods: First, we established the mouse model of psoriasis using imiquimod (IMQ), and high-performance liquid chromatography (HPLC) was used for the quality control of BZLF. Secondly, Total RNA Sequencing and bioinformatics analysis were used to explore the regulatory mechanism of BZLF in improving psoriatic lesions. Finally, further verification was based on animal experiments. Results: we externally applied BZLF for skin lesions in an imiquimod-induced psoriasis mouse model and found that BZLF alleviated psoriasis-like skin lesions while inhibiting the expression of Ki67 and inflammatory factors (Il17a, Tnf-α, S100a7 and Cxcl1) in skin lesions. Transcriptome sequencing results suggested that BZLF inhibited signalling pathways closely related to psoriatic inflammation, such as the IL-17 signalling pathway, chemokine signalling pathway, TNF signalling pathway, and NF-kappa B signalling pathway, and the protein-protein interaction (PPI) network identified LCN2 as one of the core target genes and screened out its regulated downstream gene MMP9. Discussion: Our findings suggest that the anti-psoriatic mechanism of BZLF involved in downregulating the LCN2/MMP-9 axis.

14.
Handb Exp Pharmacol ; 278: 155-180, 2023.
Article En | MEDLINE | ID: mdl-35879575

Two-pore channels (TPCs) belong to the family of voltage-gated tetrameric cation channels and are ubiquitously expressed in organelles of animals and plants. These channels are believed to be evolutionary intermediates between homotetrameric voltage-gated potassium/sodium channels and the four-domain, single subunit, voltage-gated sodium/calcium channels. Each TPC subunit contains 12 transmembrane segments that can be divided into two homologous copies of an S1-S6 Shaker-like 6-TM domain. A functional TPC channel assembles as a dimer - the equivalent of a voltage-gated tetrameric cation channel. The plant TPC channel is localized in the vacuolar membrane and is also called the SV channel for generating the slow vacuolar (SV) current observed long before its molecular identification. Three subfamilies of mammalian TPC channels have been defined - TPC1, 2, and 3 - with the first two being ubiquitously expressed in animals and TPC3 being expressed in some animals but not in humans. Mammalian TPC1 and TPC2 are localized to the endolysosomal membrane and their functions are associated with various physiological processes. TPC3 is localized in the plasma membrane and its physiological function is not well defined.


Calcium Channels , Voltage-Gated Sodium Channels , Humans , Animals , Calcium Channels/genetics , Calcium Channels/metabolism , Ion Channel Gating , Endosomes/metabolism , Cations/metabolism , Voltage-Gated Sodium Channels/metabolism , Mammals/metabolism
15.
Nat Chem Biol ; 19(1): 72-80, 2023 01.
Article En | MEDLINE | ID: mdl-36163384

The transient receptor potential vanilloid 2 (TRPV2) ion channel is a polymodal receptor widely involved in many physiological and pathological processes. Despite many TRPV2 modulators being identified, whether and how TRPV2 is regulated by endogenous lipids remains elusive. Here, we report an endogenous cholesterol molecule inside the vanilloid binding pocket (VBP) of TRPV2, with a 'head down, tail up' configuration, resolved at 3.2 Å using cryo-EM. Cholesterol binding antagonizes ligand activation of TRPV2, which is removed from VBP by methyl-ß-cyclodextrin (MßCD) as resolved at 2.9 Å. We also observed that estradiol (E2) potentiated TRPV2 activation by 2-aminoethoxydiphenyl borate (2-APB), a classic tool compound for TRP channels. Our cryo-EM structures (resolved at 2.8-3.3 Å) further suggest how E2 disturbed cholesterol binding and how 2-APB bound within the VBP with E2 or without both E2 and endogenous cholesterol, respectively. Therefore, our study has established the structural basis for ligand recognition of the inhibitory endogenous cholesterol and excitatory exogenous 2-APB in TRPV2.


TRPV Cation Channels , TRPV Cation Channels/chemistry , Ligands
16.
Opt Express ; 31(26): 43550-43559, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-38178448

We demonstrate a laser-diode-pumped multipass Nd:glass laser amplifier with a range of advanced characteristics. The amplifier exhibits high extraction efficiency, enables arbitrary shaping of spatial beam intensity, and effectively suppresses frequency modulation to amplitude modulation conversion. Our approach achieves excellent beam quality via thermal lensing and thermal depolarization compensation. When a 1.82 mJ/5 ns laser pulse was injected into the amplifier, the output energy reached up to 3.3 J with a repetition rate of 1 Hz at a central wavelength of 1053.3 nm. The near-field modulation of the amplified output beam was below 1.2, and the far-field focusing ability of the beam was 90% at 2.9 times the diffraction limit. This laser amplifier system holds potential for integration as a preamplifier within the SG-II upgrade high power laser facility.

17.
Polymers (Basel) ; 15(23)2023 Nov 30.
Article En | MEDLINE | ID: mdl-38231985

Nanosized spherical polyelectrolyte brushes (SPBs) are ideal candidates for the preparation of nanometal catalysts, protein separation, and medical diagnostics. Until now, SPBs have been synthesized by photo-emulsion polymerization in a batch reactor, which remains challenging to scale up. This paper reports a successful continuous preparation of SPBs by photo-emulsion polymerization in a self-made microreactor. The effects of residence time, monomer concentration, and feed ratios on the conversion of monomers and SPB structures are systematically investigated by dynamic lighting scattering and transmission electron microscopy. Poly(acrylic acid) (PAA) SPBs obtained in a microreactor exhibiting a narrow size distribution with a short reaction time are very effective in inhibiting the calcium carbonate scale and are comparable to those produced in a batch reactor. This work confirms the feasibility of continuous preparation and scaled-up production of SPBs.

18.
Langmuir ; 38(42): 12915-12923, 2022 10 25.
Article En | MEDLINE | ID: mdl-36225101

Distinct platinum (Pt) nanozymes as peroxidase mimics have received extensive interest owing to their outstanding catalytic activity, high environmental tolerance, lower consumption, and great potential in replacing natural enzymes. However, easy agglomeration of Pt nanoparticles (Pt NPs) resulting from the high surface free energy significantly decrease their peroxidase-like activity. Herein, spherical polyelectrolyte brush (SPB)-stabilized ultrasmall Pt NPs (SPB@Pt NPs) were prepared by a novel synthetic strategy where the SPB not only performed as a nanoreactor for the synthesis of ultrasmall Pt NPs but also greatly stabilized Pt NPs against aggregation. The well-defined SPB@Pt NP nanozymes exhibited outstanding peroxidase-like activity for the catalytic oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB and were then used to establish a colorimetric sensor for rapid detection of cysteine, giving a limit of detection of 0.11 µM. Moreover, the colorimetric detection system was demonstrated with outstanding performance in sensitive and selective detection of cysteine in the presence of several interference molecules. From these results, SPB@Pt NPs have been regarded as promising peroxidase mimics for a large number of applications such as in biosensing, biomedicine, the food industry, and environmental chemistry.


Metal Nanoparticles , Platinum , Platinum/chemistry , Polyelectrolytes , Cysteine , Metal Nanoparticles/chemistry , Hydrogen Peroxide/chemistry , Peroxidases
20.
Nature ; 609(7927): 616-621, 2022 09.
Article En | MEDLINE | ID: mdl-35917926

The PIN-FORMED (PIN) protein family of auxin transporters mediates polar auxin transport and has crucial roles in plant growth and development1,2. Here we present cryo-electron microscopy structures of PIN3 from Arabidopsis thaliana in the apo state and in complex with its substrate indole-3-acetic acid and the inhibitor N-1-naphthylphthalamic acid (NPA). A. thaliana PIN3 exists as a homodimer, and its transmembrane helices 1, 2 and 7 in the scaffold domain are involved in dimerization. The dimeric PIN3 forms a large, joint extracellular-facing cavity at the dimer interface while each subunit adopts an inward-facing conformation. The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of indole-3-acetic acid and NPA and elucidate the molecular mechanism of NPA inhibition on PIN-mediated auxin transport. The PIN3 structures support an elevator-like model for the transport of auxin, whereby the transport domains undergo up-down rigid-body motions and the dimerized scaffold domains remain static.


Arabidopsis Proteins , Arabidopsis , Indoleacetic Acids , Apoproteins/chemistry , Apoproteins/metabolism , Apoproteins/ultrastructure , Arabidopsis/chemistry , Arabidopsis/metabolism , Arabidopsis/ultrastructure , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/ultrastructure , Biological Transport/drug effects , Cryoelectron Microscopy , Indoleacetic Acids/chemistry , Indoleacetic Acids/metabolism , Phthalimides/chemistry , Phthalimides/pharmacology , Protein Domains , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism
...