Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Neurosci Bull ; 38(9): 1007-1024, 2022 Sep.
Article En | MEDLINE | ID: mdl-35235180

Focal cortical dysplasia (FCD) is one of the most common causes of drug-resistant epilepsy. Dysmorphic neurons are the major histopathological feature of type II FCD, but their role in seizure genesis in FCD is unclear. Here we performed whole-cell patch-clamp recording and morphological reconstruction of cortical principal neurons in postsurgical brain tissue from drug-resistant epilepsy patients. Quantitative analyses revealed distinct morphological and electrophysiological characteristics of the upper layer dysmorphic neurons in type II FCD, including an enlarged soma, aberrant dendritic arbors, increased current injection for rheobase action potential firing, and reduced action potential firing frequency. Intriguingly, the upper layer dysmorphic neurons received decreased glutamatergic and increased GABAergic synaptic inputs that were coupled with upregulation of the Na+-K+-Cl- cotransporter. In addition, we found a depolarizing shift of the GABA reversal potential in the CamKII-cre::PTENflox/flox mouse model of drug-resistant epilepsy, suggesting that enhanced GABAergic inputs might depolarize dysmorphic neurons. Thus, imbalance of synaptic excitation and inhibition of dysmorphic neurons may contribute to seizure genesis in type II FCD.


Drug Resistant Epilepsy , Epilepsy , Malformations of Cortical Development , Animals , Drug Resistant Epilepsy/surgery , Epilepsy/pathology , Malformations of Cortical Development/pathology , Malformations of Cortical Development, Group I , Mice , Neurons/pathology , Seizures/pathology
2.
Cell ; 179(4): 864-879.e19, 2019 10 31.
Article En | MEDLINE | ID: mdl-31675497

Physical or mental stress leads to neuroplasticity in the brain and increases the risk of depression and anxiety. Stress exposure causes the dysfunction of peripheral T lymphocytes. However, the pathological role and underlying regulatory mechanism of peripheral T lymphocytes in mood disorders have not been well established. Here, we show that the lack of CD4+ T cells protects mice from stress-induced anxiety-like behavior. Physical stress-induced leukotriene B4 triggers severe mitochondrial fission in CD4+ T cells, which further leads to a variety of behavioral abnormalities including anxiety, depression, and social disorders. Metabolomic profiles and single-cell transcriptome reveal that CD4+ T cell-derived xanthine acts on oligodendrocytes in the left amygdala via adenosine receptor A1. Mitochondrial fission promotes the de novo synthesis of purine via interferon regulatory factor 1 accumulation in CD4+ T cells. Our study implicates a critical link between a purine metabolic disorder in CD4+ T cells and stress-driven anxiety-like behavior.


Anxiety/metabolism , Behavior, Animal/physiology , Brain Diseases, Metabolic/metabolism , Stress, Psychological/metabolism , Amygdala/metabolism , Amygdala/pathology , Animals , Anxiety/genetics , Anxiety/immunology , Anxiety/physiopathology , Brain Diseases, Metabolic/genetics , Brain Diseases, Metabolic/physiopathology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , Disease Models, Animal , Humans , Mice , Mitochondrial Dynamics/genetics , Oligodendroglia/metabolism , Oligodendroglia/pathology , Single-Cell Analysis , Stress, Psychological/genetics , Stress, Psychological/physiopathology , Transcriptome/genetics , Xanthine/metabolism
3.
J Phys Chem A ; 114(13): 4689-96, 2010 Apr 08.
Article En | MEDLINE | ID: mdl-20225904

A computational study with the B3LYP density functional theory was carried out to study the reaction mechanism for the cycloisomerization of allenes catalyzed by Au(I) and Au(III) complexes. The catalytic performance of Au complexes in different oxidation states as well as the effects of the counterion on the catalytic activities has been studied in detail. Our calculations show that the catalytic reaction is initiated by coordination of the Au(I) or Au(III) catalyst to the distal double bond of allene and activation of allene toward facile nucleophilic attack, then 3-pyrroline obtained via two-step proton shift, followed by demetalation. On the basis of our calculations, H shifts are key steps of the catalytic cycle, which are significantly affected by the gold oxidation state, counterion, ligands, and assistant catalyst. AuCl is found to be more reactive than AuCl(3); however, the Au(III)-catalyzed path does not involve an oxidation state change from Au(III) to Au(I). Our calculated results rationalize the experimental findings well and overthrow the previous conjecture about Au(I) serving as the catalytically active species for Au(III)-catalyzed cycloisomerization.


Alkadienes/chemistry , Amines/chemistry , Gold Compounds/chemistry , Gold/chemistry , Algorithms , Amination , Catalysis , Catalytic Domain , Cyclization , Ions/chemistry , Isomerism , Models, Chemical , Oxidation-Reduction , Protons , Quantum Theory , Solvents/chemistry
...