Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 154
1.
Natl Sci Rev ; 11(4): nwae043, 2024 Apr.
Article En | MEDLINE | ID: mdl-38650829

For sessile plants, gene expression plays a pivotal role in responding to salinity stress by activating or suppressing specific genes. However, our knowledge of genetic variations governing gene expression in response to salt stress remains limited in natural germplasm. Through transcriptome analysis of the Global Mini-Core Rice Collection consisting of a panel of 202 accessions, we identified 22 345 and 27 610 expression quantitative trait loci associated with the expression of 7787 and 9361 eGenes under normal and salt-stress conditions, respectively, leveraging the super pan-genome map. Notably, combined with genome-wide association studies, we swiftly pinpointed the potential candidate gene STG5-a major salt-tolerant locus known as qSTS5. Intriguingly, STG5 is required for maintaining Na+/K+ homeostasis by directly regulating the transcription of multiple members of the OsHKT gene family. Our study sheds light on how genetic variants influence the dynamic changes in gene expression responding to salinity stress and provides a valuable resource for the mining of salt-tolerant genes in the future.

2.
Gigascience ; 132024 Jan 02.
Article En | MEDLINE | ID: mdl-38486346

Commelinales belongs to the commelinids clade, which also comprises Poales that includes the most important monocot species, such as rice, wheat, and maize. No reference genome of Commelinales is currently available. Water hyacinth (Pontederia crassipes or Eichhornia crassipes), a member of Commelinales, is one of the devastating aquatic weeds, although it is also grown as an ornamental and medical plant. Here, we present a chromosome-scale reference genome of the tetraploid water hyacinth with a total length of 1.22 Gb (over 95% of the estimated size) across 8 pseudochromosome pairs. With the representative genomes, we reconstructed a phylogeny of the commelinids, which supported Zingiberales and Commelinales being sister lineages of Arecales and shed lights on the controversial relationship of the orders. We also reconstructed ancestral karyotypes of the commelinids clade and confirmed the ancient commelinids genome having 8 chromosomes but not 5 as previously reported. Gene family analysis revealed contraction of disease-resistance genes during polyploidization of water hyacinth, likely a result of fitness requirement for its role as a weed. Genetic diversity analysis using 9 water hyacinth lines from 3 continents (South America, Asia, and Europe) revealed very closely related nuclear genomes and almost identical chloroplast genomes of the materials, as well as provided clues about the global dispersal of water hyacinth. The genomic resources of P. crassipes reported here contribute a crucial missing link of the commelinids species and offer novel insights into their phylogeny.


Eichhornia , Eichhornia/genetics , Genomics , Disease Resistance , Europe , Exercise
3.
Plant Commun ; 5(1): 100673, 2024 Jan 08.
Article En | MEDLINE | ID: mdl-37596786

Grain size is an important determinant of grain yield in rice. Although dozens of grain size genes have been reported, the molecular mechanisms that control grain size remain to be fully clarified. Here, we report the cloning and characterization of GR5 (GRAIN ROUND 5), which is allelic to SMOS1/SHB/RLA1/NGR5 and encodes an AP2 transcription factor. GR5 acts as a transcriptional activator and determines grain size by influencing cell proliferation and expansion. We demonstrated that GR5 physically interacts with five Gγ subunit proteins (RGG1, RGG2, DEP1, GS3, and GGC2) and acts downstream of the G protein complex. Four downstream target genes of GR5 in grain development (DEP2, DEP3, DRW1, and CyCD5;2) were revealed and their core T/CGCAC motif identified by yeast one-hybrid, EMSA, and ChIP-PCR experiments. Our results revealed that GR5 interacts with Gγ subunits and cooperatively determines grain size by regulating the expression of downstream target genes. These findings provide new insight into the genetic regulatory network of the G protein signaling pathway in the control of grain size and provide a potential target for high-yield rice breeding.


Oryza , Oryza/metabolism , Gene Regulatory Networks , Edible Grain/genetics , Edible Grain/metabolism , Signal Transduction , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism
4.
Mol Plant ; 17(1): 4-7, 2024 01 01.
Article En | MEDLINE | ID: mdl-37990497

The current apomixis system used in fixing heterozygosity suffers from the problems of low fertility and limited apomixis induction rate. This study implies that egg-cell-specific expression of dandelion's PAR combined with MiMe in hybrid rice can efficiently trigger highly fertile synthetic apomixis for effective clonal propagation of hybrids.


Apomixis , Oryza , Oryza/genetics , Apomixis/genetics , Fertility/genetics , Phenotype , Seeds/genetics
5.
J Integr Plant Biol ; 66(2): 196-207, 2024 Feb.
Article En | MEDLINE | ID: mdl-38158885

Rice (Oryza sativa) is a significant crop worldwide with a genome shaped by various evolutionary factors. Rice centromeres are crucial for chromosome segregation, and contain some unreported genes. Due to the diverse and complex centromere region, a comprehensive understanding of rice centromere structure and function at the population level is needed. We constructed a high-quality centromere map based on the rice super pan-genome consisting of a 251-accession panel comprising both cultivated and wild species of Asian and African rice. We showed that rice centromeres have diverse satellite repeat CentO, which vary across chromosomes and subpopulations, reflecting their distinct evolutionary patterns. We also revealed that long terminal repeats (LTRs), especially young Gypsy-type LTRs, are abundant in the peripheral CentO-enriched regions and drive rice centromere expansion and evolution. Furthermore, high-quality genome assembly and complete telomere-to-telomere (T2T) reference genome enable us to obtain more centromeric genome information despite mapping and cloning of centromere genes being challenging. We investigated the association between structural variations and gene expression in the rice centromere. A centromere gene, OsMAB, which positively regulates rice tiller number, was further confirmed by expression quantitative trait loci, haplotype analysis and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 methods. By revealing the new insights into the evolutionary patterns and biological roles of rice centromeres, our finding will facilitate future research on centromere biology and crop improvement.


DNA, Satellite , Oryza , DNA, Satellite/metabolism , Oryza/genetics , Oryza/metabolism , Base Sequence , Centromere/genetics , Genome, Plant/genetics
6.
Rice (N Y) ; 16(1): 47, 2023 Oct 24.
Article En | MEDLINE | ID: mdl-37874376

Soil salinization is one of the most common abiotic stresses of rice, which seriously affects the normal growth of rice. Breeding salt-tolerant varieties have become one of the important ways to ensure food security and sustainable agricultural development. However, the mechanisms underlying salt tolerance control still need to be clarified. In this study, we identified a mutant, termed salt-tolerant and small grains(sts), with salt tolerance and small grains. Gene cloning and physiological and biochemical experiments reveal that sts is a novel mutant allele of Mitogen-activated protein Kinase Kinase 4 (OsMKK4), which controls the grain size, and has recently been found to be related to salt tolerance in rice. Functional analysis showed that OsSTS is constitutively expressed throughout the tissue, and its proteins are localized to the nucleus, cell membrane, and cytoplasm. It was found that the loss of OsSTS function enhanced the salt tolerance of rice seedlings, and further studies showed that the loss of OsSTS function increased the ROS clearance rate of rice seedlings, independent of ionic toxicity. In order to explore the salt tolerance mechanism of sts, we found that the salt tolerance of sts is also regulated by ABA through high-throughput mRNA sequencing. Salt and ABA treatment showed that ABA might alleviate the inhibitory effect of salt stress on root length in sts. These results revealed new functions of grain size gene OsMKK4, expanded new research ideas related to salt tolerance mechanism and hormone regulation network, and provided a theoretical basis for salt-tolerant rice breeding.

7.
Nucleic Acids Res ; 51(20): 10924-10933, 2023 11 10.
Article En | MEDLINE | ID: mdl-37843097

Detailed knowledge of the genetic variations in diverse crop populations forms the basis for genetic crop improvement and gene functional studies. In the present study, we analyzed a large rice population with a total of 10 548 accessions to construct a rice super-population variation map (RSPVM), consisting of 54 378 986 single nucleotide polymorphisms, 11 119 947 insertion/deletion mutations and 184 736 presence/absence variations. Assessment of variation detection efficiency for different population sizes revealed a sharp increase of all types of variation as the population size increased and a gradual saturation of that after the population size reached 10 000. Variant frequency analysis indicated that ∼90% of the obtained variants were rare, and would therefore likely be difficult to detect in a relatively small population. Among the rare variants, only 2.7% were predicted to be deleterious. Population structure, genetic diversity and gene functional polymorphism of this large population were evaluated based on different subsets of RSPVM, demonstrating the great potential of RSPVM for use in downstream applications. Our study provides both a rich genetic basis for understanding natural rice variations and a powerful tool for exploiting great potential of rare variants in future rice research, including population genetics and functional genomics.


Genetic Variation , Oryza , Genetics, Population , Genomics , Oryza/genetics , Polymorphism, Single Nucleotide
9.
Plant Biotechnol J ; 21(4): 819-838, 2023 04.
Article En | MEDLINE | ID: mdl-36597711

Plant architecture and stress tolerance play important roles in rice breeding. Specific leaf morphologies and ideal plant architecture can effectively improve both abiotic stress resistance and rice grain yield. However, the mechanism by which plants simultaneously regulate leaf morphogenesis and stress resistance remains elusive. Here, we report that SRL10, which encodes a double-stranded RNA-binding protein, regulates leaf morphology and thermotolerance in rice through alteration of microRNA biogenesis. The srl10 mutant had a semi-rolled leaf phenotype and elevated sensitivity to high temperature. SRL10 directly interacted with catalase isozyme B (CATB), and the two proteins mutually increased one other's stability to enhance hydrogen peroxide (H2 O2 ) scavenging, thereby contributing to thermotolerance. The natural Hap3 (AGC) type of SRL10 allele was found to be present in the majority of aus rice accessions, and was identified as a thermotolerant allele under high temperature stress in both the field and the growth chamber. Moreover, the seed-setting rate was 3.19 times higher and grain yield per plant was 1.68 times higher in near-isogenic line (NIL) carrying Hap3 allele compared to plants carrying Hap1 allele under heat stress. Collectively, these results reveal a new locus of interest and define a novel SRL10-CATB based regulatory mechanism for developing cultivars with high temperature tolerance and stable yield. Furthermore, our findings provide a theoretical basis for simultaneous breeding for plant architecture and stress resistance.


Oryza , Thermotolerance , Thermotolerance/genetics , Oryza/metabolism , Catalase/genetics , Catalase/metabolism , Isoenzymes/metabolism , Plant Breeding , Edible Grain , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism
10.
Front Plant Sci ; 13: 1065449, 2022.
Article En | MEDLINE | ID: mdl-36466225

The weedy rice (Oryza sativa f. spontanea) harbors large numbers of excellent traits and genetic diversities, which serves as a valuable germplasm resource and has been considered as a typical material for research about de-domestication. However, there are relatively few reference genomes on weedy rice that severely limit exploiting these genetic resources and revealing more details about de-domestication events. In this study, a high-quality genome (~376.4 Mb) of weedy rice A02 was assembled based on Nanopore ultra-long platform with a coverage depth of about 79.3× and 35,423 genes were predicted. Compared to Nipponbare genome, 5,574 structural variations (SVs) were found in A02. Based on super pan-genome graph, population SVs of 238 weedy rice and cultivated rice accessions were identified using public resequencing data. Furthermore, the de-domestication sites of weedy rice and domestication sites of wild rice were analyzed and compared based on SVs and single-nucleotide polymorphisms (SNPs). Interestingly, an average of 2,198 genes about de-domestication could only be found by F ST analysis based on SVs (SV-F ST) while not by F ST analysis based on SNPs (SNP-F ST) in divergent region. Additionally, there was a low overlap between domestication and de-domestication intervals, which demonstrated that two different mechanisms existed in these events. Our finding could facilitate pinpointing of the evolutionary events that had shaped the genomic architecture of wild, cultivated, and weedy rice, and provide a good foundation for cloning of the superior alleles for breeding.

11.
Front Plant Sci ; 13: 1005203, 2022.
Article En | MEDLINE | ID: mdl-36388599

Highly seed vigor (SV) is essential for rice direct seeding (DS). Understanding the genetic mechanism of SV-related traits could contribute to increasing the efficiency of DS. However, only a few genes responsible for SV have been determined in rice, and the regulatory network of SV remains obscure. In this study, the seed germination rate (GR), seedling shoot length (SL), and shoot fresh weight (FW) related to SV traits were measured, and a genome-wide association study (GWAS) was conducted to detect high-quality loci responsible for SV using a panel of 346 diverse accessions. A total of 51 significant SNPs were identified and arranged into six quantitative trait locus (QTL) regions, including one (qGR1-1), two (qSL1-1, qSL1-2), and three (qFW1-1, qFW4-1, and qFW7-1) QTLs associated with GR, SL, and FW respectively, which were further validated using chromosome segment substitution lines (CSSLs). Integrating gene expression, gene annotation, and haplotype analysis, we found 21 strong candidate genes significantly associated with SV. In addition, the SV-related functions of LOC_Os01g11270 and LOC_Os01g55240 were further verified by corresponding CRISPR/Cas9 gene-edited mutants. Thus, these results provide clues for elucidating the genetic basis of SV control. The candidate genes or QTLs would be helpful for improving DS by molecular marker-assisted selection (MAS) breeding in rice.

12.
Pathogens ; 11(11)2022 Oct 30.
Article En | MEDLINE | ID: mdl-36365016

Burkholderia glumae is an important rice pathogen, thus the genomic and evolutionary history may be helpful to control this notorious pathogen. Here, we present two complete genomes of the B. glumae strains HN1 and HN2, which were isolated from diseased rice seed in China. Average nucleotide identity (ANI) analysis shows greater than 99% similarity of the strains HN1 and HN2 with other published B. glumae genomes. Genomic annotation revealed that the genome of strain HN1 consists of five replicons (6,680,415 bp) with an overall G + C content of 68.06%, whereas the genome of strain HN2 comprises of three replicons (6,560,085 bp) with an overall G + C content of 68.34%. The genome of HN1 contains 5434 protein-coding genes, 351 pseudogenes, and 1 CRISPR, whereas the genome of HN2 encodes 5278 protein-coding genes, 357 pseudogenes, and 2 CRISPR. Both strains encode many pathogenic-associated genes (143 genes in HN1 vs. 141 genes in HN2). Moreover, comparative genomic analysis shows the extreme plasticity of B. glumae, which may contribute to its pathogenicity. In total, 259 single-copy genes were affected by positive selection. These genes may contribute to the adaption to different environments. Notably, six genes were characterized as virulence factors which may be an additional way to assist the pathogenicity of B. glumae.

14.
Plant J ; 111(5): 1354-1367, 2022 09.
Article En | MEDLINE | ID: mdl-35781905

Momilactone A, an important plant labdane-related diterpenoid, functions as a phytoalexin against pathogens and an allelochemical against neighboring plants. The genes involved in the biosynthesis of momilactone A are found in clusters, i.e., momilactone A biosynthetic gene clusters (MABGCs), in the rice and barnyardgrass genomes. In addition, we know little about the origin and evolution of MABGCs. Here, we integrated results from comprehensive phylogeny and comparative genomic analyses of the core genes of MABGC-like clusters and MABGCs in 40 monocot plant genomes, providing convincing evidence for the birth and evolution of MABGCs in grass species. The MABGCs found in the PACMAD clade of the core grass lineage (including Panicoideae and Chloridoideae) originated from a MABGC-like cluster in Triticeae (BOP clade) via lateral gene transfer (LGT) and followed by recruitment of MAS1/2 and CYP76L1 genes. The MABGCs in Oryzoideae originated from PACMAD through another LGT event and lost CYP76L1 afterwards. The Oryza MABGC and another Oryza diterpenoid cluster c2BGC are two distinct clusters, with the latter originating from gene duplication and relocation within Oryzoideae. Further comparison of the expression patterns of the MABGC genes between rice and barnyardgrass in response to pathogen infection and allelopathy provides novel insights into the functional innovation of MABGCs in plants. Our results demonstrate LGT-mediated origination of MABGCs in grass and shed lights into the evolutionary innovation and optimization of plant biosynthetic pathways.


Diterpenes , Echinochloa , Oryza , Diterpenes/metabolism , Echinochloa/genetics , Echinochloa/metabolism , Multigene Family , Oryza/metabolism , Plants/metabolism , Poaceae/genetics , Poaceae/metabolism
15.
Front Plant Sci ; 13: 912637, 2022.
Article En | MEDLINE | ID: mdl-35783926

Soil salinity poses a serious threat to the sustainable production of rice (Oryza sativa L.) throughout the world. Thus, the detection of loci and alleles responsible for salt tolerance is fundamental to accelerating the improvement of rice and producing the resilient varieties that will ensure future harvests. In this study, we collected a set of 191 mini-core rice populations from around the world, evaluated their salt tolerance based on plant growth and development phenotypes at the seedling stage, and divided a standard evaluation score (SES) of visual salt injury into five different grades. We used ∼3.82 million single nucleotide polymorphisms (SNPs) to identify 155 significant SNPs and 275 genes associated with salt sensitivity based on a genome-wide association study (GWAS) of SES. In particular, two candidate genes, ZFP179 and OsDSR2, were associated with salt tolerance, and OsHKT1;1 was co-detected in the entire GWAS of all the panels and indica. Additionally, we investigated the transcriptional changes in cultivars 93-11 and PA64s under normal and salinity stress conditions and found 517 co-upregulated and 223 co-downregulated genes. These differentially expressed genes (DEGs) were highly enriched in "response to chemical" and "stress" based on the gene ontology enrichment analysis. Notably, 30 candidate genes that were associated with the salt tolerance analysis were obtained by integrating GWAS and transcriptomic DEG analyses, including 13 cloned genes that had no reports of tolerance to salt and 17 candidate genes whose functions were unknown. To further explore these genes and their alleles, we performed haplotype analysis, genome-wide domestication detection, and transcriptome analysis to breed improved varieties. This data and the genetic resources provided will be valuable for the development of salt tolerant rice varieties.

16.
Cell Res ; 32(10): 878-896, 2022 10.
Article En | MEDLINE | ID: mdl-35821092

Pan-genomes from large natural populations can capture genetic diversity and reveal genomic complexity. Using de novo long-read assembly, we generated a graph-based super pan-genome of rice consisting of a 251-accession panel comprising both cultivated and wild species of Asian and African rice. Our pan-genome reveals extensive structural variations (SVs) and gene presence/absence variations. Additionally, our pan-genome enables the accurate identification of nucleotide-binding leucine-rich repeat genes and characterization of their inter- and intraspecific diversity. Moreover, we uncovered grain weight-associated SVs which specify traits by affecting the expression of their nearby genes. We characterized genetic variants associated with submergence tolerance, seed shattering and plant architecture and found independent selection for a common set of genes that drove adaptation and domestication in Asian and African rice. This super pan-genome facilitates pinpointing of lineage-specific haplotypes for trait-associated genes and provides insights into the evolutionary events that have shaped the genomic architecture of various rice species.


Oryza , Domestication , Genome, Plant , Genomics , Leucine/genetics , Nucleotides , Oryza/genetics
17.
Plant Sci ; 323: 111382, 2022 Oct.
Article En | MEDLINE | ID: mdl-35850283

Chloroplast development is a complex process that is critical for the growth and development of plants. Pentapeptide repeat (PPR) proteins contain large members but only few of them have been characterized in rice. In this study, we identified a new PLS-type protein, WAL3 (Whole Albino Leaf on Chromosome 3), playing important roles in plant chloroplast development. Knockout of WAL3 gene in Nipponbare variety caused abnormal chloroplast development and showed an albino lethal phenotype. Expression analysis showed that WAL3 gene was constitutively expressed with the highest expression in leaves. The WAL3 protein localized in chloroplasts and affected the splicing of multiple group II introns. Transcriptome sequencing showed that WAL3 involved in multiple metabolic pathways including the chlorophyll synthesis and photosynthetic related metabolic pathways. The decreased abundance of photosynthesis-related proteins in wal3 mutants indicated WAL3 influence photosynthesis. In summary, our study revealed that WAL3 is essential for chloroplast development in rice.


Oryza , Chloroplasts/metabolism , Gene Expression Regulation, Plant , Mutation , Oryza/metabolism , Phenotype , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
18.
Nat Commun ; 13(1): 689, 2022 02 03.
Article En | MEDLINE | ID: mdl-35115514

As one of the great survivors of the plant kingdom, barnyard grasses (Echinochloa spp.) are the most noxious and common weeds in paddy ecosystems. Meanwhile, at least two Echinochloa species have been domesticated and cultivated as millets. In order to better understand the genomic forces driving the evolution of Echinochloa species toward weed and crop characteristics, we assemble genomes of three Echinochloa species (allohexaploid E. crus-galli and E. colona, and allotetraploid E. oryzicola) and re-sequence 737 accessions of barnyard grasses and millets from 16 rice-producing countries. Phylogenomic and comparative genomic analyses reveal the complex and reticulate evolution in the speciation of Echinochloa polyploids and provide evidence of constrained disease-related gene copy numbers in Echinochloa. A population-level investigation uncovers deep population differentiation for local adaptation, multiple target-site herbicide resistance mutations of barnyard grasses, and limited domestication of barnyard millets. Our results provide genomic insights into the dual roles of Echinochloa species as weeds and crops as well as essential resources for studying plant polyploidization, adaptation, precision weed control and millet improvements.


Crops, Agricultural/genetics , Echinochloa/genetics , Evolution, Molecular , Genome, Plant/genetics , Genomics/methods , Plant Weeds/genetics , Adaptation, Physiological/genetics , Crops, Agricultural/classification , Domestication , Echinochloa/classification , Gene Flow , Genes, Plant/genetics , Genetic Speciation , Geography , Herbicide Resistance/genetics , Phylogeny , Plant Weeds/classification , Polymorphism, Single Nucleotide , Species Specificity
19.
New Phytol ; 233(1): 344-359, 2022 01.
Article En | MEDLINE | ID: mdl-34610140

High-temperature stress inhibits normal cellular processes and results in abnormal growth and development in plants. However, the mechanisms by which rice (Oryza sativa) copes with high temperature are not yet fully understood. In this study, we identified a rice high temperature enhanced lesion spots 1 (hes1) mutant, which displayed larger and more dense necrotic spots under high temperature conditions. HES1 encoded a UDP-N-acetylglucosamine pyrophosphorylase, which had UGPase enzymatic activity. RNA sequencing analysis showed that photosystem-related genes were differentially expressed in the hes1 mutant at different temperatures, indicating that HES1 plays essential roles in maintaining chloroplast function. HES1 expression was induced under high temperature conditions. Furthermore, loss-of-function of HES1 affected heat shock factor expression and its mutation exhibited greater vulnerability to high temperature. Several experiments revealed that higher accumulation of reactive oxygen species occurred in the hes1 mutant at high temperature. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and comet experiments indicated that the hes1 underwent more severe DNA damage at high temperature. The determination of chlorophyll content and chloroplast ultrastructure showed that more severe photosystem defects occurred in the hes1 mutant under high temperature conditions. This study reveals that HES1 plays a key role in adaptation to high-temperature stress in rice.


Oryza , Gene Expression Regulation, Plant , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Temperature
20.
New Phytol ; 233(1): 515-525, 2022 01.
Article En | MEDLINE | ID: mdl-34643280

Circular RNA (circRNA) is a kind of new regulatory RNA with diverse biological functions. Numerous circRNAs have been identified in many plant species; however, evolution of plant circRNAs remains largely unknown. In this study, we assembled full-length sequences of 6519 rice (Oryza sativa) circRNAs and analyzed their conservation in another 46 plant species based on comparison of sequences and expression patterns. We found that, at the genomic level, 8.7% of the 6519 circRNAs were conserved in dicotyledonous plants and 49.1% in Oryza genus. Meanwhile, 57.8% of parental protein-coding genes of the rice circRNAs originated recently after divergence of monocotyledonous plants, implying recent origin of the majority of rice circRNAs, a conclusion further supported by the results based on analysis of 4663 full-length circRNAs in Arabidopsis thaliana. Accordingly, we proposed three models to address the origination of different types of circRNAs. Taken together, the results obtained in this study provide new insights for the evolutionary dynamics of plant circRNAs and candidate circRNAs for further functional exploration.


Oryza , RNA, Circular , Oryza/genetics , Plants/genetics , RNA/genetics , Sequence Analysis, RNA
...