Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Front Immunol ; 13: 1000681, 2022.
Article En | MEDLINE | ID: mdl-36248865

Background: The safety and immunogenicity of a personalized neoantigen-based peptide vaccine, iNeo-Vac-P01, was reported previously in patients with a variety of cancer types. The current study investigated the synergistic effects of radiofrequency ablation (RFA) and neoantigen vaccination in cancer patients and tumor-bearing mice. Methods: Twenty-eight cancer patients were enrolled in this study, including 10 patients who had received RFA treatment within 6 months before vaccination (Cohort 1), and 18 patients who had not (Cohort 2). Individualized neoantigen peptide vaccines were designed, manufactured, and subcutaneously administrated with GM-CSF as an adjuvant for all patients. Mouse models were employed to validate the synergistic efficacy of combination treatment of RFA and neoantigen vaccination. Results: Longer median progression free survival (mPFS) and median overall survival (mOS) were observed in patients in Cohort 1 compared to patients in Cohort 2 (4.42 and 20.18 months vs. 2.82 and 10.94 months). The results of ex vivo IFN-γ ELISpot assay showed that patients in Cohort 1 had stronger neoantigen-specific immune responses at baseline and post vaccination. Mice receiving combination treatment of RFA and neoantigen vaccines displayed higher antitumor immune responses than mice receiving single modality. The combination of PD-1 blockage with RFA and neoantigen vaccines further enhanced the antitumor response in mice. Conclusion: Neoantigen vaccination after local RFA treatment could improve the clinical and immune response among patients of different cancer types. The synergistic antitumor potentials of these two modalities were also validated in mice, and might be further enhanced by immune checkpoint inhibition. The mechanisms of their synergies require further investigation. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT03662815.


Cancer Vaccines , Neoplasms , Radiofrequency Ablation , Animals , Mice , Granulocyte-Macrophage Colony-Stimulating Factor , Immune Checkpoint Inhibitors , Immunotherapy/methods , Neoplasms/therapy , Programmed Cell Death 1 Receptor , Vaccination , Vaccines, Subunit
2.
Front Nutr ; 8: 706148, 2021.
Article En | MEDLINE | ID: mdl-34722602

Clostridium perfringens is an important zoonotic pathogen associated with food contamination and poisoning, gas gangrene, necrotizing enterocolitis or necrotic enteritis in humans and animals. Dysbacteriosis is supposedly associated with the development of C. perfringens infection induced necrotic enteritis, but the detailed relationship between intestinal health, microbiome, and C. perfringens infection-induced necrotic enteritis remains poorly understood. This research investigated the effect of probiotics on the growth performance and intestinal health of broilers, and the involved roles of intestinal microbiota and microbial metabolic functions under C. perfringens infection. Results showed that subclinical necrotic enteritis was successfully induced as evidenced by the significant lower body weight (BW), suppressed feed conversion ratio (FCR), decreased ileal villus height and mucosal barrier function, and increased ileal histopathological score and bursal weight index. Lactobacillus plantarum or Paenibacillus polymyxa significantly attenuated C. perfringens-induced compromise of growth performance (BW, FCR) and ileal mucosa damage as illustrated by the increased ileal villus height and villus/crypt ratio, the decreased ileal histopathological score and the enhanced ileal mucosal barrier function. L. plantarum also significantly alleviated C. perfringens-induced enlarged bursa of fabricius and the decreased levels of ileal total SCFAs, acetate, lactate, and butyrate. Furthermore, dietary L. plantarum improved C. perfringens infection-induced intestinal dysbiosis as evidenced by significantly enriched short-chain fatty acids-producing bacteria (Lachnospiraceae, Ruminococcaceae, Oscillospira, Faecalibacterium, Blautia), reduced drug-resistant bacteria (Bacteroides, Alistipes) and enteric pathogens (Escherichia coli, Bacteroides fragilis) and bacterial metabolic dysfunctions as illustrated by significantly increased bacterial fatty acid biosynthesis, decreased bacterial lipopolysaccharide biosynthesis, and antibiotic biosynthesis (streptomycin and vancomycin). Additionally, the BW and intestinal SCFAs were the principal factors affecting the bacterial communities and microbial metabolic functions. The above findings indicate that dietary with L. plantarum attenuates C. perfringens-induced compromise of growth performance and intestinal dysbiosis by increasing SCFAs and improving intestinal health in broilers.

3.
Pathogens ; 10(6)2021 Jun 11.
Article En | MEDLINE | ID: mdl-34208061

Through 4 June 2021, COVID-19 has caused over 172.84 million cases of infection and 3.71 million deaths worldwide. Due to its rapid dissemination and high mutation rate, it is essential to develop a vaccine harboring multiple epitopes and efficacious against multiple variants to prevent the immune escape of SARS-CoV-2. An in silico approach based on the viral genome was applied to identify 19 high-immunogenic B-cell epitopes and 499 human leukocyte antigen (HLA)-restricted T-cell epitopes. Thirty multi-epitope peptide vaccines were designed by iNeo-Suite and manufactured by solid-phase synthesis. Docking analysis confirmed stable hydrogen bonds of epitopes with their corresponding HLA alleles. When four peptide candidates derived from the spike protein of SARS-CoV-2 were selected to immunize mice, a significantly larger amount of total IgG in serum, as well as an increase of CD19+ cells in the inguinal lymph nodes, were observed in the peptide-immunized mice compared to the control. The ratios of IFN-γ-secreting lymphocytes in CD4+ or CD8+ T-cells in the peptide-immunized mice were higher than those in the control mice. There were also a larger number of IFN-γ-secreting T-cells in the spleens of peptide-immunized mice. The peptide vaccines in this study successfully elicited antigen-specific humoral and cellular immune responses in mice. To further validate the safety and efficacy of this vaccine, animal studies using a primate model, as well as clinical trials in humans, are required.

4.
Oncotarget ; 9(3): 3267-3277, 2018 Jan 09.
Article En | MEDLINE | ID: mdl-29423045

Chronic myeloid leukemia (CML) is a myeloproliferative pathology, originating from the hematopoietic cancer stem cells (hCSCs) due to the Bcl-Abl Philadelphia chromosome transformation. However, targeting these hCSCs as an effective anti-CML strategy is relatively less explored. Ovatodiolide (Ova) is a natural diterpenoid isolate of Anisomeles indica with broad anticancer activity. In this study, we investigated the anti-hCSCs potential of Ova against CD34+/CD38-, CD34+/CD38+, and unsorted K562 cell lines using flow cytometry, western blot, RT-PCR, genomic mapping, and tumorsphere formation assays. We demonstrated that compared to unsorted K562 and CD34+/CD38+, CD34+/CD38- cells were significantly enriched with Oct4, Sox2, CD133, Bcr-Abl, p-CrkL and p-Stat5 protein and/or mRNA. Furthermore, we showed that Ova alone or by enhancing the therapeutic potential of Imatinib, reduced the viability of CML cell lines, dose-dependently, irrespective of the cancer stemness, as well as markedly inhibit the Bcr-Abl, p-CrkL, Stat5, and MDR protein expression levels in CD34+ cells. Mechanistic investigations revealed a significant up-regulation of hsa-miR-155, which resulted in the reduction of dysregulating the PIK3CA expression in Ova-treated K562 CD34+/CD38- cells. Additionally, Ova alone or in combination with Imatinib suppressed the hCSC traits of the CD34+/CD38- cells, resulting in loss of their ability to form tumorspheres, enhanced apoptosis, increase in the Bax/Bcl-2 ratio, and dysregulation of the PI3K/AKT/mTOR signaling pathway. Together, these results demonstrate the PI3K/AKT/mTOR signaling-mediated anti-hCSC effect of Ova in CML, as well as suggest a likely role for Ova as a small molecule PI3K/mTOR dual inhibitor, thus, extending its potential benefit to other mTOR-mediated pathologies.

...