Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Front Genet ; 15: 1367399, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774282

RESUMEN

Background: Numerous studies have demonstrated a positive association between the level of tissue inhibitor of metalloproteinase 3 (TIMP3) and chronic kidney disease (CKD). Nevertheless, whether those associations reflect causal links still to be determined. This study intended to research the causal relationship of TIMP3 with CKD and markers of kidney function, such as creatinine-based estimated glomerular filtration rate (eGFRcrea), cystatin C-based estimated glomerular filtration rate (eGFRcys), eGFRcrea in diabetics (eGFRcrea (DM)) and eGFRcrea in non diabetics (eGFRcrea (No DM)). Methods: In this study, we investigated the causal relationships between TIMP3 and CKD and kidney function markers using a two-sample Mendelian randomization (MR) technique. We used summary level datasets for TIMP3 and CKD from genome-wide association studies that we were able to access through the study by Suhre K and Pattaro C. Results: We found that TIMP3 had a significant positive causal effect on the risk of CKD (Inverse variance weighted (IVW):odds ratio (OR):0.962, 95% confidence interval (CI): (0.936-0.988),P:0.005). However TIMP3 levels had no significant effect on risk of eGFRcys (PIVW: 0.114),eGFRcrea (PIVW:0.333). After grouping patients based on their diabetes status, we found that genetically higher levels of TIMP3 had a significant impact on eGFRcrea in participants without diabetes (OR:1.003,95%CI (1.001-1.006),P IVW:0.007), but not in participants with diabetes (PIVW = 0.057). Heterogeneity and pleiotropy analyses were carried out to verify the accuracy of the MR findings. Their findings were all not statistically significant. Conclusion: Our study suggests that TIMP3 may be causally associated with CKD and eGFRcrea (No DM)in people of European ancestry. Strategies aimed to increase TIMP3 levels may provide new ways to delay the deterioration of renal function.

3.
Front Plant Sci ; 14: 1078128, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844047

RESUMEN

Cold stress is one of the major constraints limiting the productivity of many important crops, including tobacco (Nicotiana tabacum L.) production and quality worldwide. However, the role of magnesium (Mg) nutrition in plants has been frequently overlooked, especially under cold stress, and Mg deficiency adversely affects plant growth and development. Here, we evaluated the influence of Mg under cold stress on tobacco morphology, nutrient uptake, photosynthetic and quality attributes. The tobacco plants were grown under different levels of cold stress, i.e., 8°C, 12°C, 16°C, including with a controlled temperature of 25°C, and evaluated their effects with Mg (+Mg) and without Mg (-Mg) application. Cold stress resulted in reduced plant growth. However, the +Mg alleviated the cold stress and significantly increased the plant biomass on an average of 17.8% for shoot fresh weight, 20.9% for root fresh weight, 15.7% for shoot dry weight, and 15.5% for root dry weight. Similarly, the nutrients uptake also increased on average for shoot-N (28.7%), root-N (22.4%), shoot-P (46.9%), root-P (7.2%), shoot-K (5.4%), root-K (28.9%), shoot-Mg (191.4%), root-Mg (187.2%) under cold stress with +Mg compared to -Mg. Mg application significantly boosted the photosynthetic activity (Pn 24.6%) and increased the chlorophyll contents (Chl-a (18.8%), Chl-b (25%), carotenoids (22.2%)) in the leaves under cold stress in comparison with -Mg treatment. Meanwhile, Mg application also improved the quality of tobacco, including starch and sucrose contents, on an average of 18.3% and 20.8%, respectively, compared to -Mg. The principal component analysis revealed that tobacco performance was optimum under +Mg treatment at 16°C. This study confirms that Mg application alleviates cold stress and substantially improves tobacco morphological indices, nutrient absorption, photosynthetic traits, and quality attributes. In short, the current findings suggest that Mg application may alleviate cold stress and improve tobacco growth and quality.

4.
Front Microbiol ; 13: 1034811, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36478866

RESUMEN

Ribonucleoside monophosphates are inevitably misincorporated into the DNA genome inside cells, and they need to be excised to avoid chromosome instability. Ribonucleases H (RNases H) are enzymes that specifically hydrolyze the RNA strand of RNA/DNA hybrids or the RNA moiety from DNA containing a stretch of RNA, they therefore are required for DNA integrity. Extensive studies have drawn a mostly clear picture of the mechanisms of RNase H catalysis, but some questions are still lacking definitive answers. This review summarizes three alternative models of RNase H catalysis. The two-metal model is prevalent, but a three-metal model suggests the involvement of a third cation in catalysis. Apparently, the mechanisms underlying metal-dependent hydrolyzation are more complicated than initially thought. We also discuss the metal choices of RNases H and analyze how chemically similar cations function differently. Substrate and cleavage-site specificities vary among RNases H, and this is explicated in detail. An intriguing phenomenon is that organisms have diverse RNase H combinations, which may provide important hints to how rnh genes were transferred during evolution. Whether RNase H is essential for cellular growth, a key question in the study of in vivo functions, is also discussed. This article may aid in understanding the mechanisms underlying RNase H and in developing potentially promising applications of it.

5.
Int J Stem Cells ; 14(3): 320-330, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-33906979

RESUMEN

BACKGROUND AND OBJECTIVES: Galectin-3 promotes fibroblast-to-myofibroblast differentiation and facilitates injury repair. Previous studies have shown that exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-ex) promote the differentiation of myocardial fibroblasts into myofibroblasts under inflammatory environment. Whether hucMSC-ex derived Galectin-3 (hucMSC-ex-Galectin-3) plays an important role in fibroblast-to-myofibroblast differentiation is the focus of this study. METHODS AND RESULTS: Galectin-3 was knocked-down by siRNA in hucMSCs, and then exosomes were extracted. Fibroblasts were treated with LPS, LPS+hucMSC-ex, LPS+negative control-siRNA-ex (NC-ex), or LPS+ Galectin-3-siRNA-ex (si-ex) in vitro. The coronary artery of the left anterior descending (LAD) branch was permanently ligated, followed by intramyocardial injection with phosphate buffered saline(PBS), hucMSC-ex, hucMSC-NC-ex, or hucMSC-si-ex in vivo. Western blot, RT-PCR, and immunohistochemistry were used to detect the expression of markers related to fibroblast-to-myofibroblast differentiation and inflammatory factors. Migration and contraction functions of fibroblasts were evaluated using Transwell migration and collagen contraction assays, respectively. ß-catenin expression was detected by western blot and immunofluorescence. The results showed that hucMSC-ex increased the protein expression of myofibroblast markers, anti-inflammatory factors, and ß-catenin. HucMSC-ex also reduced the migration and promoted the contractility of fibroblasts. However, hucMSC-si-ex did not show these activities. CONCLUSIONS: HucMSC-ex-Galectin-3 promoted the differentiation of cardiac fibroblasts into myofibroblasts in an inflammatory environment, which was associated with increased ß-catenin levels.

6.
Stem Cells Dev ; 28(12): 799-811, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30896296

RESUMEN

Cardioprotective effects of exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-exosomes) postmyocardial infarction (post-MI) have been reported in our previous study. It is known that fibroblasts are pro-inflammatory phenotypes, while myofibroblasts are anti-inflammatory phenotypes. This study aimed to investigate whether hucMSC-exosomes promoted cardiac fibroblast-to-myofibroblast differentiation in inflammatory environments and protected cardiomyocytes. Rats were performed by permanent ligation of the left anterior descending coronary artery and underwent intramyocardial injection of hucMSC-exosomes or phosphate-buffered saline (PBS) in surgery. Fibroblasts were stimulated by lipopolysaccharide (LPS) to create inflammatory environments in vitro. Western blot and immunohistochemical and immunofluorescence staining for α-smooth muscle actin were used to demonstrate fibroblast-to-myofibroblast differentiation. Transwell migration assay and CCK-8 assay were used to evaluate migration and proliferation of fibroblasts. Reverse transcription-polymerase chain reaction, western blot, and immunohistochemical staining were used to detect expressions of inflammatory factors. To investigate cardioprotective effects, cardiomyocytes were treated with supernatant derived from fibroblasts pretreated with LPS or LPS plus hucMSC-exosomes in hypoxic environments. Cardiomyocyte apoptosis was determined using TUNEL assay and western blot. Results indicated that hucMSC-exosomes increased the density of myofibroblasts in infarct areas during inflammatory phases post-MI, promoted fibroblast-to-myofibroblast differentiation in inflammatory environments, and attenuated inflammatory responses in vitro and in vivo. Culture medium derived from fibroblasts pretreated with LPS plus hucMSC-exosomes reduced cardiomyocyte apoptosis. In vivo, apoptotic cells in acute myocardial infarction (AMI)+exosomes groups were also less than AMI+PBS groups. In conclusion, hucMSC-exosomes can promote fibroblast-to-myofibroblast differentiation in inflammatory environments, then protecting cardiomyocytes.


Asunto(s)
Diferenciación Celular , Exosomas/trasplante , Trasplante de Células Madre Mesenquimatosas/métodos , Infarto del Miocardio/terapia , Miocitos Cardíacos/citología , Miofibroblastos/citología , Animales , Apoptosis , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Exosomas/metabolismo , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , Ratas , Ratas Sprague-Dawley , Cordón Umbilical/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...