Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 15(1): 6102, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030211

RESUMEN

Visible-light photocatalysis has evolved as a powerful technique to enable controllable radical reactions. Exploring unique photocatalytic mode for obtaining new chemoselectivity and product diversity is of great significance. Herein, we present a photo-induced chemoselective 1,2-diheteroarylation of unactivated alkenes utilizing halopyridines and quinolines. The ring-fused azaarenes serve as not only substrate, but also potential precursors for halogen-atom abstraction for pyridyl radical generation in this photocatalysis. As a complement to metal catalysis, this photo-induced radical process with mild and redox neutral conditions assembles two different heteroaryl groups into alkenes regioselectively and contribute to broad substrates scope. The obtained products containing aza-arene units permit various further diversifications, demonstrating the synthetic utility of this protocol. We anticipate that this protocol will trigger the further advancement of photo-induced alkyl/aryl halides activation.

4.
Dalton Trans ; 53(11): 5241-5248, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38393641

RESUMEN

Using electrochemical water splitting to generate hydrogen is considered a desirable approach, which is greatly impeded by the sluggish dissociation of H2O and adsorption and desorption of H*. Effective hydrogen production can be achieved by speeding up the chemical process with a suitable electrocatalyst. In this work, we designed and synthesized a rare earth element cerium (Ce) regulated iron-nickel bimetallic phosphide Ce-NiFeP@NF (here NiFeP represents Fe2P/NiP2) nanoarray with nanoflowers. For the hydrogen evolution reaction (HER), Ce-NiFeP@NF only needs an overpotential of 106 mV to provide a current density of 10 mA cm-2, compared to NiFeP@NF (175 mV@10 mA cm-2). This self-supported electrocatalyst Ce-NiFeP@NF with a composite morphology exhibits excellent performance in the HER. Specifically, the introduction of Ce promotes the electron transfer process at the Fe2P/NiP2 heterojunction interface and the Ce-NiFeP@NF nanocomposite structure with nanoflowers has a larger electrochemically active specific surface area, which is more conducive to improving the intrinsic catalytic activity. Also, a dual-electrode alkaline electrolytic cell (Ce-NiFeP@NF functions as both the anode and the cathode) operates with a cell voltage of only 1.56 V to achieve a current density of 10 mA cm-2. The synergistic effect of rare earth element doping and heterojunction engineering can improve the morphology of intrinsic catalysts to achieve more efficient electrochemical water splitting for hydrogen production.

5.
Angew Chem Int Ed Engl ; 63(2): e202314304, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38009446

RESUMEN

Bridged benzazepine scaffolds, possessing unique structural and physicochemical activities, are widespread in various natural products and drugs. The construction of these skeletons often requires elaborate synthetic effort with low efficiency. Herein, we develop a simple and divergent approach for constructing various bridged benzazepines by a photocatalytic intermolecular dearomatization of naphthalene derivatives with readily available α-amino acids. The bridged motif is created via a cascade sequence involving photocatalytic 1,4-hydroaminoalkylation, alkene isomerization and cyclization. Interestingly, the diastereoselectivity can be regulated through different reaction modes in the cyclization step. Moreover, aminohydroxylation and its further bromination have also been demonstrated to access highly functionalized bridged benzazepines. Preliminary mechanistic studies have been performed to get insights into the mechanism. This method provides a divergent synthetic approach for construction of highly functionalized bridged benzazepines, which have been otherwise difficult to access.

6.
Plant Biotechnol J ; 22(5): 1164-1176, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38070185

RESUMEN

Soybean is a short-day plant that typically flowers earlier when exposed to short-day conditions. However, the identification of genes associated with earlier flowering time but without a yield penalty is rare. In this study, we conducted genome-wide association studies (GWAS) using two re-sequencing datasets that included 113 wild soybeans (G. soja) and 1192 cultivated soybeans (G. max), respectively, and simultaneously identified a candidate flowering gene, qFT13-3, which encodes a protein homologous to the pseudo-response regulator (PRR) transcription factor. We identified four major haplotypes of qFT13-3 in the natural population, with haplotype H4 (qFT13-3H4) being lost during domestication, while qFT13-3H1 underwent natural and artificial selection, increasing in proportion from 4.5% in G. soja to 43.8% in landrace and to 81.9% in improve cultivars. Notably, most cultivars harbouring qFT13-3H1 were located in high-latitude regions. Knockout of qFT13-3 accelerated flowering and maturity time under long-day conditions, indicating that qFT13-3 functions as a flowering inhibitor. Our results also showed that qFT13-3 directly downregulates the expression of GmELF3b-2 which is a component of the circadian clock evening complex. Field trials revealed that the qft13-3 mutants shorten the maturity period by 11 days without a concomitant penalty on yield. Collectively, qFT13-3 can be utilized for the breeding of high-yield cultivars with a short maturity time suitable for high latitudes.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Glycine max/genética , Fitomejoramiento , Haplotipos/genética , Fotoperiodo , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética
7.
J Magn Reson Imaging ; 59(3): 737-746, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37254969

RESUMEN

The habenula (Hb) is involved in many natural human behaviors, and the relevance of its alterations in size and neural activity to several psychiatric disorders and addictive behaviors has been presumed and investigated in recent years using magnetic resonance imaging (MRI). Although the Hb is small, an increasing number of studies have overcome the difficulties in MRI. Conventional structural-based imaging also has great defects in observing the Hb contrast with adjacent structures. In addition, more and more attention should be paid to the Hb's functional, structural, and quantitative imaging studies. Several advanced MRI methods have recently been employed in clinical studies to explore the Hb and its involvement in psychiatric diseases. This review summarizes the anatomy and function of the human Hb; moreover, it focuses on exploring the human Hb with noninvasive MRI approaches, highlighting strategies to overcome the poor contrast with adjacent structures and the need for multiparametric MRI to develop imaging markers for diagnosis and treatment follow-up. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Habénula , Trastornos Mentales , Imágenes de Resonancia Magnética Multiparamétrica , Humanos , Habénula/anatomía & histología , Imagen por Resonancia Magnética/métodos
8.
J Infect Dis ; 228(12): 1789-1799, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37335928

RESUMEN

Staphylococcus aureus is a major human pathogen associated with high mortality rates. The extensive use of antibiotics is associated with the rise of drug resistance, and exotoxins are not targeted by antibiotics. Therefore, monoclonal antibody (mAb) therapy has emerged as a promising solution to solve the clinical problems caused by refractory S aureus. Recent research suggests that the synergistic effects of several cytotoxins, including bicomponent toxins, are critical to the pathogenesis of S aureus. By comparing the amino acid sequences, researchers found that α-toxin and bicomponent toxins have high homology. Therefore, we aimed to screen an antibody, designated an all-in-one mAb, that could neutralize α-toxin and bicomponent toxins through hybridoma fusion. We found that this mAb has a significant pharmacodynamic effect within in vivo mouse models and in vitro experiments.


Asunto(s)
Toxinas Bacterianas , Infecciones Estafilocócicas , Humanos , Animales , Ratones , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Staphylococcus aureus , Infecciones Estafilocócicas/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
9.
Polymers (Basel) ; 15(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36987198

RESUMEN

The development of biomass-based composites has greatly reduced the daily consumption of plastics. However, these materials are rarely recyclable, thus, posing a severe threat to the environment. Herein, we designed and prepared novel composite materials with ultra-high biomass (i.e., wood flour) filling capacity and good closed-loop recycling properties. The dynamic polyurethane polymer was polymerized in situ on the surface of wood fiber, and then they were hot-pressed into composites. Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), and dynamic thermomechanical analysis (DMA) measurements reveal good compatibility between the polyurethane and wood flour in the composites when the wood flour content is ≤80 wt%. The maximum tensile and bending strength of the composite are 37 and 33 MPa when the wood flour content is 80%. The higher wood flour content results in higher thermal expansion stability and creep resistance in the composites. Moreover, the thermal debonding of dynamic phenol-carbamate bonds facilitates the composites to undergo physical and chemical cycling. The recycled and remolded composites exhibit good mechanical property recovery rates and retain the chemical structures of the original composites.

10.
Small ; 19(19): e2206455, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36755193

RESUMEN

Development of efficient and robust cathode catalysts is critical for the commercialization of Li-O2 batteries (LOBs). Herein, a well-designed CePO4 @N-P-CNSs cathode catalyst for LOBs via coupling P-N site-rich N, P co-doped graphene-like carbon nanosheets (N-P-CNSs) with nano-CePO4 via a novel "in situ derivation" coupling strategy by in situ transforming the P atoms of P-C sites in N-P-CNSs to CePO4 is reported. The CePO4 @N-P-CNSs exhibit superior bifunctional ORR/OER activity relative to commercial Pt/C-RuO2 with an overall overpotential of 0.64 V (vs RHE). Moreover, the LOB with CePO4 @N-P-CNSs as the cathode catalyst delivers a low charge overpotential of 0.67 V (vs Li/Li+ ), high discharge capacity of 29774 mAh g-1 at 100 mA g-1 and long cycling stability of 415 cycles, respectively. The remarkably enhanced LOB performance is attributable to the in situ derived CePO4 nanoparticles and the P-N sites in N-P-CNSs, which facilitate increased bifunctional ORR/OER activity, promote the rapid and effective decomposition of Li2 O2 and inhibit the formation of Li2 CO3 . This work may provide new inspiration for designing efficient, durable, and cost-effective cathode catalysts for LOBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA