Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosurg ; 134(3): 1054-1063, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32384279

RESUMEN

OBJECTIVE: The anterior thalamic nucleus (ATN) is a common target for deep brain stimulation (DBS) for the treatment of drug-refractory epilepsy. However, no atlas-based optimal DBS (active contacts) target within the ATN has been definitively identified. The object of this retrospective study was to analyze the relationship between the active contact location and seizure reduction to establish an atlas-based optimal target for ATN DBS. METHODS: From among 25 patients who had undergone ATN DBS surgery for drug-resistant epilepsy between 2016 and 2018, those who had follow-up evaluations for more than 1 year were eligible for study inclusion. After an initial stimulation period of 6 months, patients were classified as responsive (≥ 50% median decrease in seizure frequency) or nonresponsive (< 50% median decrease in seizure frequency) to treatment. Stimulation parameters and/or active contact positions were adjusted in nonresponsive patients, and their responsiveness was monitored for at least 1 year. Postoperative CT scans were coregistered nonlinearly with preoperative MR images to determine the center coordinate and atlas-based anatomical localizations of all active contacts in the Montreal Neurological Institute (MNI) 152 space. RESULTS: Nineteen patients with drug-resistant epilepsy were followed up for at least a year following bilateral DBS electrode implantation targeting the ATN. Active contacts located more adjacent to the center of gravity of the anterior half of the ATN volume, defined as the anterior center (AC), were associated with greater seizure reduction than those not in this location. Intriguingly, the initially nonresponsive patients could end up with much improved seizure reduction by adjusting the active contacts closer to the AC at the final postoperative follow-up. CONCLUSIONS: Patients with stimulation targeting the AC may have a favorable seizure reduction. Moreover, the authors were able to obtain additional good outcomes after electrode repositioning in the initially nonresponsive patients. Purposeful and strategic trajectory planning to target this optimal region may predict favorable outcomes of ATN DBS.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Epilepsia Refractaria/terapia , Tálamo/patología , Adulto , Núcleos Talámicos Anteriores/cirugía , Atlas como Asunto , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/patología , Electrodos Implantados , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Tálamo/diagnóstico por imagen , Tálamo/cirugía , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
2.
Nature ; 577(7790): 386-391, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31875851

RESUMEN

The motor cortex controls skilled arm movement by sending temporal patterns of activity to lower motor centres1. Local cortical dynamics are thought to shape these patterns throughout movement execution2-4. External inputs have been implicated in setting the initial state of the motor cortex5,6, but they may also have a pattern-generating role. Here we dissect the contribution of local dynamics and inputs to cortical pattern generation during a prehension task in mice. Perturbing cortex to an aberrant state prevented movement initiation, but after the perturbation was released, cortex either bypassed the normal initial state and immediately generated the pattern that controls reaching or failed to generate this pattern. The difference in these two outcomes was probably a result of external inputs. We directly investigated the role of inputs by inactivating the thalamus; this perturbed cortical activity and disrupted limb kinematics at any stage of the movement. Activation of thalamocortical axon terminals at different frequencies disrupted cortical activity and arm movement in a graded manner. Simultaneous recordings revealed that both thalamic activity and the current state of cortex predicted changes in cortical activity. Thus, the pattern generator for dexterous arm movement is distributed across multiple, strongly interacting brain regions.


Asunto(s)
Corteza Motora/fisiología , Movimiento , Animales , Conducta Animal , Femenino , Masculino , Ratones , Tálamo/fisiología
4.
Elife ; 4: e10774, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26633811

RESUMEN

Mammalian cerebral cortex is accepted as being critical for voluntary motor control, but what functions depend on cortex is still unclear. Here we used rapid, reversible optogenetic inhibition to test the role of cortex during a head-fixed task in which mice reach, grab, and eat a food pellet. Sudden cortical inhibition blocked initiation or froze execution of this skilled prehension behavior, but left untrained forelimb movements unaffected. Unexpectedly, kinematically normal prehension occurred immediately after cortical inhibition, even during rest periods lacking cue and pellet. This 'rebound' prehension was only evoked in trained and food-deprived animals, suggesting that a motivation-gated motor engram sufficient to evoke prehension is activated at inhibition's end. These results demonstrate the necessity and sufficiency of cortical activity for enacting a learned skill.


Asunto(s)
Corteza Cerebral/fisiología , Conducta Alimentaria , Locomoción , Animales , Ratones , Optogenética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...