Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Org Lett ; 26(15): 3135-3139, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38563556

RESUMEN

Herein, we present the first racemic total synthesis of the structurally complex monoterpene indole alkaloids rhynchines A-E, starting from commercially available methyl nicotinate and 3-(2-bromoethyl)-1H-indole. The success of our synthesis is attributed to the utilization of a bioinspired synthetic strategy, which facilitated the rapid construction of the pentacyclic core skeleton of the target molecules through biomimetic skeletal rearrangement and late-stage C-H oxidative cyclization. Additionally, silica-gel-promoted tautomerization played a crucial role as a strategic element in the chemical synthesis of rhynchines A and B.

2.
Angew Chem Int Ed Engl ; 63(22): e202402931, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38527934

RESUMEN

Herein, we present a unified chemical synthesis of three subgroups of cephalotaxus diterpenoids. Key to the success lies in adopting a synthetic strategy that is inspired by biosynthesis but is opposite in nature. By employing selective one-carbon introduction and ring expansion operations, we have successfully converted cephalotane-type C18 dinorditerpenoids (using cephanolide B as a starting material) into troponoid-type C19 norditerpenoids and intact cephalotane-type C20 diterpenoids. This synthetic approach has enabled us to synthesize cephinoid H, 13-oxo-cephinoid H, 7-oxo-cephinoid H, fortalpinoid C, 7-epi-fortalpinoid C, cephanolide E, and 13-epi-cephanolide E. Furthermore, through the development of an intermolecular asymmetric Michael reaction between ß-oxo esters and ß-substituted enones, we have achieved the enantioselective synthesis of advanced intermediates within our synthetic sequence, thus formally realizing the asymmetric total synthesis of the cephalotaxus diterpenoids family.


Asunto(s)
Cephalotaxus , Diterpenos , Diterpenos/síntesis química , Diterpenos/química , Cephalotaxus/química , Estructura Molecular , Estereoisomerismo
3.
Microbiol Spectr ; : e0525722, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37668395

RESUMEN

Rabies kills more than 59,000 people annually, mainly in developing countries. Previous studies on the evolution and distribution of rabies viruses (RABVs) were scattered. Here, we explore the evolution and distribution of this deadly virus from a novel panorama view. Multiple bioinformatic software tools were employed to analyze the phylogenetic diversity, evolution, spatiotemporal, and distribution of RABVs. The analyses were based on 1,202 qualified full-length genomes of RABVs and numerous literatures. Of the 10 distinct phylogenetic clades of RABV that we identified, more frequent intra- and inter-clade recombination occurs in the sequences of Asian-SEA, Arctic, and Cosmopolitan clades isolated from China, while according to existing sequence information, RABV might originate from bats (posterior probability, PP = 0.75, PP = 0.60 inferred from N and L genes, separately) in North America (PP = 0.57, PP = 0.62 inferred from N and L genes, separately). Due to the difference in evolutionary rate of N (2.22 × 10-4 subs/site/year, 95% HPD 1.99-2.47 × 10-4 subs/site/year) and L genes (1.67 × 10-4 subs/site/year, 95% HPD 1.59-1.74 × 10-4 subs/site/year), the root age was 1,406.6 (95% HPD 1,291.2-1,518.2) and 1,122.7 (95% HPD 1,052.4-1,193.9) inferred from N and L genes, separately. Among other findings, Mephitidae plays an important role in the interspecific transmission and communication of RABV, which we found tends to spread to populations genetically proximate to the host. We also identified amino acids under positive selection in different genes of different clades as well as single nucleotide variation sites important for different lineages. IMPORTANCE Rabies virus is widely distributed all over the world, and wild animals are its largest potential reservoir. Our study offers a panorama view about evolution and distribution of rabies viruses and emphasizes the need to monitor the transmission dynamics of animal rabies.

4.
Yi Chuan ; 45(6): 536-542, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340967

RESUMEN

Limb-girdle muscular dystrophy (LGMD), a rare group of non-congenital inherited muscle diseases, is characterized by a progressive reduction in muscle tone and force of the proximal limbs. The clinical manifestations and genetic patterns of LGMD are heterogeneous. This study reported on a 10-year-old male patient with LGMD type 2U who experienced muscle weakness in the lower limbs after exercise. Upon admission, the patient's creatine kinase levels were significantly elevated, and hydration and alkalinization therapy were ineffective. Using high-throughput sequencing, muscular dystrophy-related genes were tested in the patient, his parents, and his sister. The patient was found to have a heterozygous deletion of exon 9 of the ISPD gene and a heterozygous missense mutation c.1231C>T (p.Leu411Phe). The patient's father carried the heterozygous missense mutation c.1231C>T (p.Leu411Phe) of the ISPD gene, while his mother and sister carried a heterozygous deletion of exon 9 of the ISPD gene. These mutations have not been reported in existing databases or literature. Conservation and protein structure prediction analyses of the mutation sites indicated that they are highly conserved and located in the C-terminal domain of the ISPD protein, which may affect protein function. Based on the above results and relevant clinical data, the patient was definitively diagnosed with LGMD type 2U. This study enriched the spectrum of ISPD gene mutations by summarizing the patient's clinical characteristics and analyzing new ISPD gene variations. This can aid in the early diagnosis and genetic counseling of the disease.


Asunto(s)
Distrofia Muscular de Cinturas , Masculino , Humanos , Niño , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/diagnóstico , Mutación , Pruebas Genéticas , Mutación Missense , Exones
5.
J Colloid Interface Sci ; 642: 145-153, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37001453

RESUMEN

Yellow fluorescent silicon quantum dots (y-SiQDs) with 22.2% fluorescence quantum yield were synthesized by a simple hydrothermal method using 3-glycidoxypropyl triethoxysilane (GOTS) and m-aminophenol. The excitation wavelength is 550 nm with an emission wavelength of 574 nm, which effectively avoids the interference of biological autofluorescence. Notably, the synthesis approach does not require any post-modification and the y-SiQDs can be directly used for hydrogen sulfide (H2S) quantification due to static quenching. It exhibits high sensitivity and excellent selectivity for H2S with a 0.2-10 µM (R2 = 0.9953) linear range and detection limit of 54 nM. y-SiQDs have excellent stability and biocompatibility and can be used for H2S imaging in living cells and onion tissues.


Asunto(s)
Sulfuro de Hidrógeno , Puntos Cuánticos , Silicio , Cebollas , Límite de Detección , Colorantes Fluorescentes
6.
Anal Chim Acta ; 1239: 340723, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36628723

RESUMEN

As a common reactive metabolite in living organisms, abnormal levels of formaldehyde may cause diseases such as cancer and Alzheimer's disease. Therefore, it is important to develop a sensitive and efficient method to understand the role of formaldehyde in physiology and pathology. Herein, a new fluorescent probe 4-phenyl-2-(trifluoromethyl) quinolin-7-hydrazino (QH-FA) was prepared for the detection of formaldehyde in near-total aqueous media with hydrazine as the reaction site and quinoline derivatives as the fluorophore. After reacting with formaldehyde, the hydrazine group formed methylenehydrazine and the fluorescence was significantly enhanced (223-fold) with large Stokes shift of 140 nm. Furthermore, the response of QH-FA to formaldehyde could be finished with in only 10 min with good selectivity, and can distinguish formaldehyde from other aldehydes. More remarkably, the estimated limit of detection of QH-FA is 8.1 nM, which is superior to those of previously reported formaldehyde fluorescent probes. At the end, we detected formaldehyde in cells and zebrafish using QH-FA in a near-total aqueous system and obtained fluorescence images by confocal microscopy.


Asunto(s)
Quinolinas , Pez Cebra , Animales , Humanos , Hidrazinas/metabolismo , Células HeLa , Formaldehído , Colorantes Fluorescentes/metabolismo
7.
Mikrochim Acta ; 189(9): 329, 2022 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-35962292

RESUMEN

Sulfhydryl functionalized silicon quantum dots (S-SiQDs) with a fluorescence quantum yield of 38.5% were synthesized using 3-mercaptopropyltrimethoxysilane (MPTMS) and m-phenylenediamine by a simple one-pot method. It is worth noting that by oxidizing the surface sulfhydryl groups and statically quenching, the fluorescence of S-SiQDs at 492 nm (excitation at 383 nm) can be selectively quenched by hypochlorite (ClO-) in a linear range of 0.05 to 1.8 µM with a low detection limit of 13 nM. The reaction was completed in 10 s with no interference from other ROS, metal ions, anions and reducing species. The silicon source containing sulfhydryl groups was used to synthesize silicon quantum dots for the first time, and the surface of the S-SiQDs was provided with sulfhydryl groups and reacted rapidly and sensitively with ClO-. The S-SiQDs have good photostability and biocompatibility, and can be further used for ClO- imaging in MCF-7 cells and zebrafish, showing great promise in biological imaging. The proposed assay demonstrates that 3-mercaptopropyltrimethoxysilane is a good choice to obtain a functionalized fluorescent nanoprobe for redox species.


Asunto(s)
Puntos Cuánticos , Animales , Ácido Hipocloroso , Puntos Cuánticos/toxicidad , Silicio , Compuestos de Sulfhidrilo , Pez Cebra
8.
Anal Sci ; 38(6): 913-916, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35306639

RESUMEN

A simple, fast and reliable method based on capillary electrophoresis (CE) coupled with laser-induced fluorescence (LIF) detection was developed for the simultaneous analysis of NO released both inside and outside cells at the single-cell level closer to physiological conditions. After pre-capillary dual-labeling derivatization with a group of cells, single cells were injected into the separation capillary and lysed. The subsequent separation and detection of NO derivatives were achieved within 4.0 min producing mass limits of detection of 3.0 and 10.7 amol for intra- and extracellular NO, respectively. The developed method was successfully applied for simultaneous measurement of NO released both inside and outside single RAW 264.7 macrophage cells.


Asunto(s)
Electroforesis Capilar , Macrófagos , Electroforesis Capilar/métodos
9.
J Sep Sci ; 45(8): 1425-1433, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35112469

RESUMEN

Trans-fatty acids are unsaturated fatty acids that are considered to have health risks. 1,3,5,7-Tetramethyl-8-butyrethylenediamine-difluoroboradiaza-s-indacene is a highly sensitive fluorescent labeling reagent for carboxylic acids developed by our lab. In this study, using this precolumn fluorescent derivatization reagent, a rapid and accurate high-performance liquid chromatography with fluorescence detection method was developed for the determination of two trans-fatty acids in food samples. Under the optimized derivative conditions, two trans-fatty acids were tagged with the fluorescent labeling reagent in the presence of 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide at 25°C for 30 min. Then, the baseline separation of trans- and cis-fatty acids and their saturated fatty acid with similar structures was achieved with less interference using a reversed-phased C18 column with isocratic elution in 14 min. With fluorescence detection at λex /λem  = 490 /510 nm, the linear range of the TFAs was 1.0-200 nM with low detection limits in the range of 0.1-0.2 nM (signal-to-noise ratio = 3). In addition, the proposed approach was successfully applied for the detection of trans-fatty acids in food samples, and the recoveries using this method ranged from 96.02 to 109.22% with low relative standard deviations of 1.2-4.3% (n = 6).


Asunto(s)
Ácidos Grasos trans , Ácidos Carboxílicos/análisis , Cromatografía Líquida de Alta Presión/métodos , Ácidos Grasos/análisis , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos
10.
Mikrochim Acta ; 189(2): 60, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35018504

RESUMEN

Monitoring hydroxyl radical (·OH) in living cells remains a big challenge on account of its high reactivity and short half-life. In this work, we designed a fluorescent probe based on manganese-doped silicon quantum dots (Mn-SiQDs) for detecting and imaging of ·OH with good water solubility. The manganese was doped in its ethylene diamine tetra-acetic acid (EDTA) complex form and effectively improved the metal ion tolerance of fluorescence of SiQDs. And m-dihydroxybenzene was used as the reductant to extend the emission of SiQDs to the green region at 515 nm when the excitation wavelength was 424 nm. Basing on the fluorescence quenching of Mn-SiQDs, a linear response of ·OH was observed in the range 0.8-50 µM with a limit of detection (LOD) of 88.4 nM, which is lower than those reported with SiQDs. The interference from other ROS or RNS has been assessed and no impact was found. In fully aqueous systems, the Mn-SiQDs have been applied to monitor and image the endogenous ·OH in HeLa cells. Our work provided a new strategy for designing SiQDs with good biocompatibility, high selectivity and long monitoring wavelength. Synthesis of green-emitting silicon quantum dots with N-[3 -(trimethoxysilyl) propyl] ethylenediamine (DAMO), Ethylenediamine tetraacetic acid disodium salt dehydrate (EDTA-2Na·2H2O), manganese acetate tetrahydrate (Mn(CH3COO)2·4H20) and m-dihydroxybenzene. The green fluorescence of the silicon quantum dots can be selectively quenched by hydroxyl radicals.


Asunto(s)
Fluorescencia , Radical Hidroxilo/química , Manganeso/química , Puntos Cuánticos/química , Silicio/química , Células HeLa , Humanos , Microscopía Electrónica de Transmisión , Análisis de la Célula Individual
11.
Analyst ; 146(24): 7740-7747, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34842257

RESUMEN

The endoplasmic reticulum (ER) is one of the most important organelles in cells and is involved in protein synthesis, folding and orderly transport. Redox balance is the key to its normal function. In this work, we designed and synthesized an endoplasmic reticulum-targeted fluorescent probe N-Se with selenomorpholine as the redox reversible detection moiety. N-Se could selectively respond to ClO- within only 8 s with a LOD of 28.8 nM. Furthermore, such a response is reversible in the regulation of GSH. Confocal fluorescence imaging confirmed the excellent endoplasmic reticulum targeting ability of N-Se. Thus, it could real-time monitor the dynamic changes of the redox status in the endoplasmic reticulum through the variation of the fluorescence intensity.


Asunto(s)
Retículo Endoplásmico , Colorantes Fluorescentes , Retículo Endoplásmico/metabolismo , Colorantes Fluorescentes/metabolismo , Células HeLa , Humanos , Imagen Óptica , Oxidación-Reducción
12.
Analyst ; 146(9): 2974-2982, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33949411

RESUMEN

Fluorescence resonance energy transfer (FRET) is often applied to construct fluorescent probes for acquiring high selectivity and sensitivity. According to the FRET theory, a homodimer composed of two identical fluorophores with a small Stokes shift has only weak fluorescence due to homo-FRET between fluorophores, and the fluorescence could be recovered after the destruction of the homodimer. In this study, we designed and synthesized a homodimer fluorescent probe, namely 1,3,5,7-tetramethyl-8-(4'-phenylthiophenol)-boron difluoride-dipyrrole methane dimer (D-TMSPB), based on this turn-on strategy. In D-TMSPB, the disulfide moiety was selected as the response moiety of biothiols, and BODIPY fluorophore was chosen as both donor and acceptor in FRET due to the ultra-small Stokes shifts and obvious overlap of its excitation/emission peak. D-TMSPB exhibited only weak fluorescence. After selective reaction with biothiols, FRET was destroyed and the derivative exhibited strong fluorescence at 514 nm with the limit of detection of about 0.15 µM for GSH. Notably, the derivative of biothiols shows remarkable fluorescence only in acidic conditions, which accords with the internal environment of lysosome. Thus, D-TMSPB was applied to image the biothiols of lysosome in living cells. The turn-on fluorescence of D-TMSPB indicated that homo-FRET is a practical strategy to design turn-on fluorescent probes, particularly for the sensing mechanism based on leaving groups.

13.
J Org Chem ; 86(2): 1938-1947, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33356269

RESUMEN

Ynamides, though relatively more stable than ynamines, are still moisture-sensitive and prone to hydration especially under acidic and heating conditions. Here we report an environmentally benign, robust protocol to synthesize sulfonamide-based ynamides and arylynamines via Sonogashira coupling reactions in water, using a readily available quaternary ammonium salt as the surfactant.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 244: 118872, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-32889341

RESUMEN

The spores of Bacillus anthracis are highly deadly to human beings and animals, and are concurrently potential biological warfare agents. Hence, the rapid and sensitive monitoring Bacillus anthracis biomarker, dipicolinic acid (DPA), is very desirable. Herein, orange/green dual-emissive carbon dots (OG-CDs) were synthesized via the hydrothermal approach. The OG-CDs not only emitted dual fluorescence at 527 and 590 nm under the single 503 nm excitation, but also exhibited excellent water solubility, good photostability and great salt tolerance. The fluorescence of the OG-CDs at 527 nm can be completely quenched when chelated with Cu(II). However, because of the stronger chelation between DPA and Cu(II), the fluorescence restored rapidly on subsequent addition of DPA. As such, the CD-Cu(II) system can be used for determination of DPA based on the fluorescence "off-on" response. Under optimum conditions, the detection limit for DPA was 56 nM, with a linear range of 0.5-12.5 µM. The established CD-Cu(II) based spectrofluorometric method has been applied to the analysis of DPA in real water samples with recoveries of 93.6%-104.3%. More remarkably, the CD-Cu(II) probe also has been successfully applied for the imaging of DPA in Escherichia coli with excellent bio-compatibility.


Asunto(s)
Carbunco , Citrus sinensis , Puntos Cuánticos , Biomarcadores , Carbono , Humanos , Espectrometría de Fluorescencia
15.
Analyst ; 145(22): 7349-7356, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-32930197

RESUMEN

Metal-Organic Frameworks (MOFs) are of bright promise as new fluorescence sensors because of their accurate framework structure and unique fluorescence properties. Many MOFs have been reported as fluorescence sensors, including bulk-MOF-crystals and nano-MOF-powder. Obviously, the sensing performance of these MOF sensors should be diverse due to their different sizes. However, bulk-MOF-crystals and nano-MOF-powder have completely different dispersibility in solvents, and the effects of this difference on the analytical performance like precision and sensitivity are significant but have not been discussed systematically. To investigate such effects, rodlike bulk-MOFs and nano-MOFs with the same structure but different sizes are required. In this work, we obtained MOFs with a crystal width ranging from 9.7 µm to 170 nm by controlled synthesis, and then proved that they have the same structure by PXRD, SEM, TGA and FTIR analysis. After that, taking folic acid as the target molecule, fluorescent sensing experiments were carried out to compare the sensing performance between bulk-MOFs and nano-MOFs. From the results, we found that nano-MOFs have obviously better dispersity, a lower precipitation speed, a smaller standard deviation, ten times higher fluorescence intensities and a much lower LOD than bulk-MOFs. Finally, we draw a conclusion that nano-MOFs are more in line with the requirements of analytical performance as fluorescence sensors, and the size of MOFs as fluorescence sensors should be as small as possible.

16.
Anal Chem ; 92(17): 11904-11911, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32786460

RESUMEN

Single-cell analysis contributes to the understanding of cellular heterogeneity and behaviors. Nitric oxide (NO) is an important intracellular and intercellular signaling molecule, and the functions of NO are closely related to the balance between intra- and extracellular NO levels. In this manuscript, a convenient and reliable method based on a dual-labeling strategy using capillary electrophoresis (CE) separation with laser-induced fluorescence (LIF) detection has been presented for quantifying intra- and extracellular NO simultaneously in single cells. Followed by single-cell injection, a plug of HEPES buffer containing 1,3,5,7-tetramethyl-8-(3',4'-diaminophenyl)-difluoroboradiaza-s-indacene and disodium 2,6-disulfonate-1,3-dimethyl-5-hexadecyl-8-(3,4-diaminophenyl)-4,4'-difluoro-4-bora-3a,4a-diaza-s-indacene as the labeling reagents for intra- and extracellular NO, respectively, was aspirated from the inlet of the capillary. The on-line derivatization was carried out on the tip of the capillary at room temperature for 20 min. Then, the cell was lysed and NO derivatives were well separated within 14 min, producing mass detection limits (S/N = 3) of 2.4 and 8.1 amol for intra- and extracellular NO, respectively. The proposed method was validated by simultaneous analysis of intra- and extracellular NO in single macrophage cells. The dual labeling-based CE-LIF method holds great promise for research on the functions of NO as well as other bioactive molecules at the single-cell level.


Asunto(s)
Electroforesis Capilar/métodos , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Análisis de la Célula Individual/métodos , Espectrometría de Fluorescencia/métodos , Animales , Ratones
17.
J Mater Chem B ; 8(7): 1422-1431, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31976510

RESUMEN

A small-molecule fluorescent probe offers unique advantages for the detection of hydrogen sulfide (H2S) and other reactive small molecules including high sensitivity, cell permeability and high spatiotemporal resolution. Generally, in order to obtain good cell permeability, fluorescent probes are liposoluble, which in turn leads to poor water solubility. Thus, it is regrettable that most of these fluorescent probes cannot be used in fully aqueous systems and hence, organic solvents are used, which may cause negative effects on living cells. Silicon nanodots (SiNDs) have been widely used in many fields due to good water solubility, benign nature, biocompatibility and low toxicity. Herein, we proposed a two-photon SiND-ANPA-N3 fluorescent probe with good water solubility, excellent biocompatibility and low toxicity; it is suitable to detect H2S in totally aqueous media and living cells. This strategy may provide a technically simple and facile approach for designing fluorescent probes with excellent solubility, benign nature, and biocompatibility for use in fully aqueous systems and in vivo.


Asunto(s)
Colorantes Fluorescentes/química , Sulfuro de Hidrógeno/análisis , Nanopartículas/química , Cebollas/química , Fotones , Silicio/química , Supervivencia Celular/efectos de los fármacos , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , Humanos , Células MCF-7 , Estructura Molecular , Imagen Óptica , Tamaño de la Partícula , Silicio/farmacología , Solubilidad , Propiedades de Superficie , Células Tumorales Cultivadas , Agua/química
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 117972, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31891868

RESUMEN

An efficient and stable fluorescent sensor is described for the detection and imaging of thiols. It is making use of silicon quantum dots (SiQDs) which can be rapidly prepared. They were characterized by transmission electron microscopy, X-ray power diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometry. The SiQDs have an absorption maximum at 300 nm and displayed blue-green fluorescence with excitation/emission maxima at 410/480 nm. A mixture of SiQDs and 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) exhibits strong fluorescence emission which however is quenched within 30 s of incubation with thiols. This is assumed to be due to an inner filter effect caused by the reaction of DTNB and thiols. The following thiols were tested: cysteine, homocysteine, and glutathione. The sensor has a linear response in the 3-100 µM thiol concentration range, and the LODs are between 0.80 and 0.96 µM. The sensor displays low cytotoxicity and was applied to fluorescence imaging of MCF-7 cells and Hela cells where it demonstrated excellent biocompatibility.


Asunto(s)
Técnicas Biosensibles/métodos , Ácido Ditionitrobenzoico/química , Fluorescencia , Colorantes Fluorescentes/química , Puntos Cuánticos , Silicio/química , Compuestos de Sulfhidrilo/análisis , Células HeLa , Humanos , Células MCF-7 , Espectrometría de Fluorescencia , Compuestos de Sulfhidrilo/química
19.
J Pharm Biomed Anal ; 180: 113052, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-31884391

RESUMEN

Carbon dots (CDs) are popular as fluorescence sensors, and metal ions are typical analytes. However, CDs used as fluorescent sensors for Fe3+ have some interferences coming from co-existed ions. In this study, we suspect that sp3 boron atom in phenylboronic acid group will be more compatible with Fe3+ to form coordination bonds, thereby increasing the selectivity to Fe3+. Hence, we designed and synthesized boron and nitrogen codoped carbon dots (BN-CDs) for detection of Fe3+ via a hydrothermal method using o-phenylenediamine (OPA) and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylchloroformate as precursors. From the results, we found that BN-CDs had superior selectivity to Fe3+ in the presence of the other common interfering metal ions like Cu2+, Fe2+ and Pb2+. Besides, the obtained BN-CDs exhibited good water solubility, favorable photostability, excellent pH stability between pH 2-11, and strong fluorescence intensity with quantum yield up to 31.5 %. These excellent properties of carbon dots validate that our idea is feasible, and can be used for design CDs for Fe3+ detection. Quenching mechanism study showed the fluorescence intensity of BN-CDs could be dramatically quenched by Fe3+ through dynamic and static synergy process. Finally, the as prepared BN-CDs were successfully applied to the determination of Fe3+ in fetal bovine serum and lake water.


Asunto(s)
Boro/química , Carbono/química , Compuestos Férricos/análisis , Nitrógeno/química , Puntos Cuánticos/química , Animales , Bovinos , China , Compuestos Férricos/sangre , Colorantes Fluorescentes/química , Lagos/química , Sensibilidad y Especificidad , Espectrometría de Fluorescencia
20.
Mikrochim Acta ; 186(11): 708, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31641864

RESUMEN

Red emissive B,N co-doped carbon dots (BN-CDs) were hydrothermally synthesized from cresyl violet and boric acid. The BN-CDs exhibited excellent photostability, low cytotoxicity, excitation/emission maxima at 520/616 nm, and a relatively high quantum yield of 18%. The BN-CDs can binded to mercury(II), and this results in quenching of the red-colored fluorescence. However, on subsequent addition of the biothiol (such as cysteine, homocysteine or glutathione), fluorescence recovers. Therefore, the BN-CDs can be used as a multifunctional probe based on "on-off-on" fluorescence response for the detection of Hg(II) and biothiols. The following detection limits were accomplished: (a) Hg(II): 2.8 µM; (b) glutathione: 1.7 µM; (c) cysteine: 2.3 µM; (d) homocysteine: 3.0 µM. The BN-CDs also have been successfully applied for the imaging of Hg(II) and biothiols in HepG2 cells with excellent bio-compatibility. Graphical abstract Red emissive B,N co-doped carbon dots (BN-CDs) were synthesized through hydrothermal treatment of cresyl violet and boric acid. The BN-CDs can be used as a multifunctional probe based on "on-off-on" fluorescence response for detecting mercury(II) and biothiols in aqueous solution and living cells.


Asunto(s)
Cisteína/análisis , Colorantes Fluorescentes/química , Glutatión/análisis , Homocisteína/análisis , Mercurio/análisis , Puntos Cuánticos/química , Boro/química , Boro/toxicidad , Carbono/química , Carbono/toxicidad , Color , Agua Potable/análisis , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/toxicidad , Células Hep G2 , Humanos , Lagos/análisis , Límite de Detección , Microscopía Confocal , Microscopía Fluorescente , Nitrógeno/química , Nitrógeno/toxicidad , Puntos Cuánticos/toxicidad , Espectrometría de Fluorescencia , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...