Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 418
1.
Article En | MEDLINE | ID: mdl-38733887

Cardiac hypertrophy (CH) is one of the stages in the occurrence and development of severe cardiovascular diseases, and exploring its biomarkers is beneficial for delaying the progression of severe cardiovascular diseases. In this research, we established a comprehensive and highly efficient pseudotargeted metabolomics method, which demonstrated a superior capacity to identify differential metabolites when compared to traditionaluntargeted metabolomics. The intra/inter-day precision and reproducibility results proved the method is reliable and precise. The established method was then applied to seek the potential differentiated metabolic biomarkers of cardiac hypertrophy (CH) rats, and oxylipins, phosphorylcholine (PC), lysophosphatidylcholine (LysoPC), lysophosphatidylethanolamine (LysoPE), Krebs cycle intermediates, carnitines, amino acids, and bile acids were disclosed to be the possible differentiate components. Their metabolic pathway analysis revealed that the potential metabolic alterations in CH rats were mainly associated with phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arachidonic acid metabolism, citrate cycle, glyoxylate and dicarboxylate metabolism, and tyrosine metabolism. In sum, this research provided a comprehensiveand reliable LC-MS/MS MRM platform for pseudo-targeted metabolomics investigation of disease condition, and some interesting potential biomarkers were disclosed for CH, which merit further exploration in the future.

2.
Sensors (Basel) ; 24(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732926

Muscle synergy has been widely acknowledged as a possible strategy of neuromotor control, but current research has ignored the potential inhibitory components in muscle synergies. Our study aims to identify and characterize the inhibitory components within motor modules derived from electromyography (EMG), investigate the impact of aging and motor expertise on these components, and better understand the nervous system's adaptions to varying task demands. We utilized a rectified latent variable model (RLVM) to factorize motor modules with inhibitory components from EMG signals recorded from ten expert pianists when they played scales and pieces at different tempo-force combinations. We found that older participants showed a higher proportion of inhibitory components compared with the younger group. Senior experts had a higher proportion of inhibitory components on the left hand, and most inhibitory components became less negative with increased tempo or decreased force. Our results demonstrated that the inhibitory components in muscle synergies could be shaped by aging and expertise, and also took part in motor control for adapting to different conditions in complex tasks.


Aging , Electromyography , Muscle, Skeletal , Humans , Electromyography/methods , Aging/physiology , Muscle, Skeletal/physiology , Adult , Male , Female , Aged , Young Adult , Middle Aged
3.
Ren Fail ; 46(1): 2349113, 2024 Dec.
Article En | MEDLINE | ID: mdl-38721900

BACKGROUND: Type 3 cardiorenal syndrome (CRS type 3) triggers acute cardiac injury from acute kidney injury (AKI), raising mortality in AKI patients. We aimed to identify risk factors for CRS type 3 and develop a predictive nomogram. METHODS: In this retrospective study, 805 AKI patients admitted at the Department of Nephrology, Second Hospital of Shanxi Medical University from 1 January 2017, to 31 December 2021, were categorized into a study cohort (406 patients from 2017.1.1-2021.6.30, with 63 CRS type 3 cases) and a validation cohort (126 patients from 1 July 2021 to 31 Dec 2021, with 22 CRS type 3 cases). Risk factors for CRS type 3, identified by logistic regression, informed the construction of a predictive nomogram. Its performance and accuracy were evaluated by the area under the curve (AUC), calibration curve and decision curve analysis, with further validation through a validation cohort. RESULTS: The nomogram included 6 risk factors: age (OR = 1.03; 95%CI = 1.009-1.052; p = 0.006), cardiovascular disease (CVD) history (OR = 2.802; 95%CI = 1.193-6.582; p = 0.018), mean artery pressure (MAP) (OR = 1.033; 95%CI = 1.012-1.054; p = 0.002), hemoglobin (OR = 0.973; 95%CI = 0.96--0.987; p < 0.001), homocysteine (OR = 1.05; 95%CI = 1.03-1.069; p < 0.001), AKI stage [(stage 1: reference), (stage 2: OR = 5.427; 95%CI = 1.781-16.534; p = 0.003), (stage 3: OR = 5.554; 95%CI = 2.234-13.805; p < 0.001)]. The nomogram exhibited excellent predictive performance with an AUC of 0.907 in the study cohort and 0.892 in the validation cohort. Calibration and decision curve analyses upheld its accuracy and clinical utility. CONCLUSIONS: We developed a nomogram predicting CRS type 3 in AKI patients, incorporating 6 risk factors: age, CVD history, MAP, hemoglobin, homocysteine, and AKI stage, enhancing early risk identification and patient management.


Acute Kidney Injury , Cardio-Renal Syndrome , Nomograms , Humans , Female , Male , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Acute Kidney Injury/blood , Retrospective Studies , Middle Aged , Risk Factors , Cardio-Renal Syndrome/diagnosis , Cardio-Renal Syndrome/complications , Cardio-Renal Syndrome/etiology , Aged , Risk Assessment/methods , China/epidemiology , Logistic Models , Adult
4.
Biomacromolecules ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38775327

The preparation of polysaccharide-peptide hydrogels usually involves multiple synthetic steps, thus reducing the effectiveness and practicality of these approaches. Inspired by recent discoveries in aqueous N-carboxyanhydride (NCA) ring-opening polymerization (ROP) and ring-opening polymerization-induced nanogelation, we present an aqueous one-pot strategy to prepare polysaccharide-polypeptide hydrogels. In this study, water-soluble polysaccharide carboxymethyl chitosan is used as the macromolecular initiator to prepare polysaccharide-polypeptide copolymers through the aqueous ROP of NCA. The catalyst-free approach afforded hydrogels with properties that could be controlled by adjusting the type and amount of NCA used, with the elastic modulus ranging from 50 Pa to 18000 Pa. The hydrogen bond-cross-linked hydrogel exhibited self-healing and injectable properties. Morphology characterization revealed that micelles were formed in the early stage of reaction, suggesting that the polymerization follows an aqueous ring-opening polymerization-induced self-assembly (ROPISA) mechanism and that aggregation of micelles during the reaction caused the gelation. Moreover, the hydrogels displayed high swelling ratios (>95% water content), and hemolysis and cytotoxicity experiments demonstrated that the hydrogels had excellent biocompatibility, indicating their potential in medical applications.

5.
Bioresour Technol ; 402: 130785, 2024 May 03.
Article En | MEDLINE | ID: mdl-38703956

Agricultural biomass used as solid carbon substrates in ecological floating beds (EFBs) has been proven to be applicable in nitrogen removal for carbon-limited wastewater treatment. However, the subtle interactions among plants, rhizosphere microorganisms, and supplementary carbon sources have not been thoroughly studied. This study combined rice straw mats with different aquatic macrophytes in EFBs to investigate denitrification efficiency in carbon-limited eutrophic waters. Results showed that rice straw significantly enhanced the nitrogen removal efficiency of EFBs, while enriching nitrogen-fixing and denitrifying bacteria (such as Rhizobium, Rubrivivax, and Rhodobacter, etc.). Additionally, during the denitrification process in EFBs, rice straw can release humic acid-like fraction as electron donors to support the metabolic activities of microorganisms, while aquatic macrophytes provide a more diverse range of dissolved organic matters, facilitating a sustainable denitrification process. These findings help to understand the synergistic effect of denitrification processes within wetland ecosystems using agricultural biomass.

6.
Arch Toxicol ; 98(6): 1937-1951, 2024 Jun.
Article En | MEDLINE | ID: mdl-38563870

The high incidence of colorectal cancer (CRC) is closely associated with environmental pollutant exposure. To identify potential intestinal carcinogens, we developed a cell transformation assay (CTA) using mouse adult stem cell-derived intestinal organoids (mASC-IOs) and assessed the transformation potential on 14 representative chemicals, including Cd, iPb, Cr-VI, iAs-III, Zn, Cu, PFOS, BPA, MEHP, AOM, DMH, MNNG, aspirin, and metformin. We optimized the experimental protocol based on cytotoxicity, amplification, and colony formation of chemical-treated mASC-IOs. In addition, we assessed the accuracy of in vitro study and the human tumor relevance through characterizing interdependence between cell-cell and cell-matrix adhesions, tumorigenicity, pathological feature of subcutaneous tumors, and CRC-related molecular signatures. Remarkably, the results of cell transformation in 14 chemicals showed a strong concordance with epidemiological findings (8/10) and in vivo mouse studies (12/14). In addition, we found that the increase in anchorage-independent growth was positively correlated with the tumorigenicity of tested chemicals. Through analyzing the dose-response relationship of anchorage-independent growth by benchmark dose (BMD) modeling, the potent intestinal carcinogens were identified, with their carcinogenic potency ranked from high to low as AOM, Cd, MEHP, Cr-VI, iAs-III, and DMH. Importantly, the activity of chemical-transformed mASC-IOs was associated with the degree of cellular differentiation of subcutaneous tumors, altered transcription of oncogenic genes, and activated pathways related to CRC development, including Apc, Trp53, Kras, Pik3ca, Smad4 genes, as well as WNT and BMP signaling pathways. Taken together, we successfully developed a mASC-IO-based CTA, which might serve as a potential alternative for intestinal carcinogenicity screening of chemicals.


Carcinogenicity Tests , Cell Transformation, Neoplastic , Colorectal Neoplasms , Environmental Pollutants , Organoids , Animals , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/drug effects , Carcinogenicity Tests/methods , Organoids/drug effects , Organoids/pathology , Mice , Environmental Pollutants/toxicity , Colorectal Neoplasms/pathology , Colorectal Neoplasms/chemically induced , Humans , Carcinogens/toxicity , Intestines/drug effects , Intestines/pathology , Intestinal Neoplasms/chemically induced , Intestinal Neoplasms/pathology , Dose-Response Relationship, Drug
7.
Article En | MEDLINE | ID: mdl-38656317

CONTEXT: Precision medicine for pituitary neuroendocrine tumors (PitNETs) is limited by the lack of reliable research models. OBJECTIVE: To generate patient-derived organoids (PDOs), which could serve as a platform for personalized drug screening for PitNET patients. DESIGN: From July 2019 to May 2022, a total of 32 human PitNET specimens were collected for the establishment of organoids with an optimized culture protocol. SETTING: This study was conducted at Sun Yat-Sen University Cancer Center. PATIENTS: PitNET patients who were pathologically confirmed were enrolled in this study. INTERVENTIONS: Histological staining and whole-exome sequencing were utilized to confirm the pathologic and genomic features of PDOs. A drug response assay on PDOs was also performed. MAIN OUTCOME MEASURES: PDOs retained key genetic and morphological features of their parental tumors. RESULTS: PDOs were successfully established from various types of PitNET samples with an overall success rate of 87.5%. Clinical nonfunctioning PitNETs-derived organoids (22/23, 95.7%) showed a higher likelihood of successful generation compared to those from functioning PitNETs (6/9, 66.7%). Preservation of cellular structure, subtype-specific neuroendocrine profiles, mutational features, and tumor microenvironment heterogeneity from parental tumors was observed. A distinctive response profile in drug tests was observed among the organoids from patients with different subtypes of PitNETs. With the validation of key characteristics from parental tumors in histological, genomic, and microenvironment heterogeneity consistency assays, we demonstrated the predictive value of the PDOs in testing individual drugs. CONCLUSION: The established PDOs, retaining typical features of parental tumors, indicate a translational significance in innovating personalized treatment for refractory PitNETs.

8.
Pancreatology ; 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38637233

BACKGROUND: Store-operated Ca2+ entry (SOCE) mediated by ORAI1 channel plays a crucial role in acute pancreatitis (AP). Macrophage is an important regulator in amplifying pancreatic tissue damage, but little is known about the role of ORAI1 in macrophages. In this study, we examined the effects of macrophage-specific ORAI1 on pancreatic tissue damage in AP. METHOD: Myeloid-specific Orai1 deficient mice was generated by crossing a LysM-Cre mouse line with Orai1f/f mice. Bone marrow-derived macrophages (BMDMs) were isolated, cultured, and stimulated to induce M1 or M2 macrophage polarization. Intracellular Ca2+ signals were measured by time-lapse confocal microscope imaging, with a Ca2+ indicator (Fluo 4). Experimental AP was induced by hourly intraperitoneal injections of caerulein or retrograde biliopancreatic infusion of sodium taurocholate. Pancreatic tissue damage was assessed by histopathological scoring and immunostaining. Sepsis was induced by intraperitoneal injection of lipopolysaccharide; organ damage and serum pro-inflammatory cytokines were measured. RESULT: Myeloid-specific Orai1 deletion exhibited minimal effect on SOCE in M0 macrophages and promoted M2 macrophage polarization ex vivo. Myeloid-specific Orai1 deletion did not affect pancreatic tissue damage, nor neutrophil or macrophage infiltration in two models of AP. Similarly, myeloid-specific Orai1 deletion did not influence overall survival rate in a model of sepsis, nor lung, kidney, and liver damage; while serum pro-inflammatory cytokines, including IL-6, TNF-α, and IL-1ß were higher in Orai1ΔLysM mice, but were largely reduced in mice with Orai1 inhibitor. CONCLUSION: Our data suggest that ORAI1 may not be a predominant SOCE channel in macrophages and play a limited role in mediating pancreatic tissue damage in AP.

9.
Analyst ; 149(10): 2806-2811, 2024 May 13.
Article En | MEDLINE | ID: mdl-38683246

We design a p-aminothiophenol (pATP) modified Au/ITO chip to determine nitrite ions in lake water by a ratiometric surface-enhanced Raman scattering (SERS) method based on nitrite ions triggering the transformation of pATP to p,p'-dimercaptoazobenzene (DMAB). Intriguingly, by using the SERS peak (at 1008 cm-1) from benzoic ring deforming as an internal standard instead of the traditional peak at 1080 cm-1, the detection sensitivity of the method was improved 10 times.

10.
Angew Chem Int Ed Engl ; 63(22): e202402943, 2024 May 27.
Article En | MEDLINE | ID: mdl-38529715

Porous aromatic frameworks (PAFs) show promising potential in anionic conduction due to their high stability and customizable functionality. However, the insolubility of most PAFs presents a significant challenge in their processing into membranes and subsequent applications. In this study, continuous PAF membranes with adjustable thickness were successfully created using liquid-solid interfacial polymerization. The rigid backbone and the stable C-C coupling endow PAF membrane with superior chemical and dimensional stabilities over most conventional polymer membranes. Different quaternary ammonium functionalities were anchored to the backbone through flexible alkyl chains with tunable length. The optimal PAF membrane exhibited an OH- conductivity of 356.6 mS ⋅ cm-1 at 80 °C and 98 % relative humidity. Additionally, the PAF membrane exhibited outstanding alkaline stability, retaining 95 % of its OH- conductivity after 1000 hours in 1 M NaOH. To the best of our knowledge, this is the first application of PAF materials in anion exchange membranes, achieving the highest OH- conductivity and exceptional chemical/dimensional stability. This work provides the possibility for the potential of PAF materials in anionic conductive membranes.

11.
Antioxidants (Basel) ; 13(3)2024 Feb 24.
Article En | MEDLINE | ID: mdl-38539809

Donkey milk is a traditional medicinal food with various biological activities. However, its production is very low, and lactating donkeys often experience oxidative stress, leading to a further decline in milk yield. In this study, we supplemented the diets of lactating donkeys with yeast selenium (SY) to investigate its effects on lactation performance, antioxidant status, and immune responses, and we expected to determine the optimum additive level of SY in the diet. For this study, 28 healthy lactating Dezhou donkeys with days in milk (DIM, 39.93 ± 7.02 d), estimated milk yield (EMY, 3.60 ± 0.84 kg/d), and parity (2.82 ± 0.48) were selected and randomly divided into 4 groups of 7 donkeys in each: Group SY-0 (control), Group SY-0.15, Group SY-0.3, and Group SY-0.5, with selenium supplementation of 0, 0.15, 0.3, and 0.5 mg of Se/kg DM (in form of SY) to the basal diet, respectively. The results showed a dose-dependent increase in milk yield, milk component yield, milk protein production efficiency, milk production efficiency, the activities of glutathione peroxidases (GSH-Px), catalase (CAT), and total antioxidant capacity (T-AOC), as well as the content of serum interleukin-10 (IL-10), white blood cells (WBC), lymphocytes (LYM), red blood cells (RBC), hematocrit, plasma selenium, and milk selenium. Conversely, it presented a dose-dependent decrease in the activity of nitric oxide synthase (iNOS) and the contents of malondialdehyde (MDA), reactive oxygen species (ROS), nitric oxide (NO), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and interferon-γ (IFN-γ). In conclusion, the results confirmed that dietary supplementation with SY can improve lactation performance, antioxidant status, and immune responses in lactating donkeys, and the recommended dose of SY was 0.3 mg/kg.

12.
ACS Nano ; 18(11): 7837-7851, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38437635

Currently, there is a lack of effective treatment for Parkinson's disease (PD). In PD patients, aberrant methylation of SNCA (α-synuclein gene) has been reported and may be a potential therapeutic target. In this study, we established an epigenetic regulation platform based on an exosomal CRISPR intervention system. With the assist of focused ultrasound (FUS) opening the blood-brain barrier, engineered exosomes carrying RVG (rabies viral glycoprotein) targeting peptide, sgRNA (single guide RNA), and dCas9-DNMT3A (named RVG-CRISPRi-Exo) were efficiently delivered into the brain lesions and induced specific methylation of SNCA. In vivo, FUS combined with RVG-CRISPRi-Exo significantly improved motor performance, balance coordination, and neurosensitivity in PD mice, greatly down-regulated the elevation of α-synuclein (α-syn) caused by modeling, rescued cell apoptosis, and alleviated the progression of PD in mice. [18F]-FP-DTBZ imaging suggested that the synaptic function of the nigrostriatal pathway could be restored, which was conducive to the control of motor behavior in PD mice. Pyrosequencing results showed that RVG-CRISPRi-Exo could methylate CpG at specific sites of SNCA, and this fine-tuned editing achieved good therapeutic effects in PD model mice. In vitro, RVG-CRISPRi-Exo down-regulated SNCA transcripts and α-syn expression and relieved neuronal cell damage. Collectively, our findings provide a proof-of-principle for the development of targeted brain nanodelivery based on engineered exosomes and provide insights into epigenetic regulation of brain diseases.


Exosomes , Parkinson Disease , Humans , Mice , Animals , Parkinson Disease/diagnostic imaging , Parkinson Disease/genetics , Parkinson Disease/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Epigenesis, Genetic/genetics , RNA, Guide, CRISPR-Cas Systems , Exosomes/metabolism
13.
Transl Cancer Res ; 13(2): 771-781, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38482432

Background: Centrosome aberration (CA) plays a vital role in tumorigenesis and metastasis under pathophysiological conditions. The existence of CA was first reported in uveal melanoma (UVM) recently. Our study aimed to investigate the association of centrosome-related genes with UVM prognosis. Methods: The Cancer Genome Atlas (TCGA)-UVM and Gene Expression Omnibus series (GSE) 22138 were included in the study. Least absolute shrinkage and selection operator (LASSO) and Cox regression were combined to screen out key genes and construct a centrosome-related gene signature. Kaplan-Meier (KM) survival curves were used to evaluate the survival differences between the 2 groups. Gene enrichment, immune infiltration, and mutation profile were used to explore the underlying mechanism. Results: A centrosome-related gene signature was constructed: Risk score =-3.27071 × MAP6 - 5.03735 × CCDC40 - 2.68459 × PRKCD + 1.826349 × IGFBP4 + 11.66582 × RAB6C - 4.86899 × CCND3. The survival possibilities of the two groups were significantly different. The high-risk group showed cancer progression, inflammation, and immune restriction characteristics when compared with the low-risk group. BAP1 mutation was associated with high risk and SF3B1 mutation was associated with low risk according to the signature. Conclusions: Our study first investigated the role of centrosome-related genes in UVM overall survival (OS). We then constructed a centrosome-related gene signature for UVM, which provides new insights into the role of CA in UVM and identifies novel centrosome-related biomarkers.

14.
Sci Total Environ ; 924: 171579, 2024 May 10.
Article En | MEDLINE | ID: mdl-38460691

How to increase the usable land area by adhering to environmentally friendly ecological restoration of mines with limited funds is a challenge that many cities are currently facing. Cost-benefit analysis (CBA) can provide efficient and effective restoration decisions for abandoned mine land (AML) ecological restoration with limited financial resources. Thus, this study proposes an integrated approach for coupling ecological benefits and restoration costs, including hotspots/coldspots analysis based on five ecosystem services (ESs), landscape connectivity analysis based on graph theory model, hidden costs, and project implementation costs to prioritize AML restoration. The study was conducted on 54 abandoned mine lands (AMLs) in Chaoyang city, the ecological security barrier of China's northern sand prevention belt (NSPB). The comprehensive analysis prioritized the restoration of AMLs into four levels, of which 9 mines were in priority I, where restoration was recommended as a priority, and 22 mines were in priority II, where restoration could be carried out within the affordability of funds. In addition, our model indicates areas with high ecological benefits, in which the ecological source area (7423.66 km2) and the ecosystem service hotspots area (2028.44 km2) are mostly distributed in the southwestern part of Chaoyang city, the two mountain ranges of Songling mountain and Nuruerhu mountain. This study provides scientific spatial guidance to ensure that the AMLs realizes effective restoration and management.

16.
Environ Sci Technol ; 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38319870

As an emerging type of pollutant, microplastics have become a global environmental problem. Approximately, a fifth of the global burden of type 2 diabetes can be attributed to air particulate pollution. However, scientific knowledge remains limited about the effects of airborne nanoplastics (NPs) exposure on metabolic diseases. In this experiment, a whole-body exposure system was used to simulate the real atmospheric environment, and three exposure concentrations combined with the actual environmental concentration were selected to explore the effects of airborne NPs on metabolic diseases. Based on histological analyses, metabolic studies, gene expression, metabolites, and molecular signaling analyses, mice exposed to airborne NPs were observed to show a phenotype of systemic inflammation and complete insulin resistance featuring excessive drinking and eating, weight loss, elevated blood glucose, and decreased triglyceride levels. After airborne NPs exposure, mice were intolerant to glucose and tolerant to insulin. In addition, airborne NPs exposure could result in long-term irreversible hyperglycemia. Together, the research findings provide a strong basis for understanding the hazards of airborne nanopollution on metabolic disorders.

17.
Hortic Res ; 11(2): uhad278, 2024 Feb.
Article En | MEDLINE | ID: mdl-38371636

The double flower is an important trait with substantial ornamental value. While mutations in PETALOSA TOE-type or AG (AGAMOUS) genes play a crucial role in enhancing petal number in ornamental plants, the complete mechanism underlying the formation of double flowers remains to be fully elucidated. Through the application of bulked segregant analysis (BSA), we identified a novel gene, APETALA2-like (PmAP2L), characterized by a 49-bp deletion in double-flowered Prunus mume. ß-Glucuronidase (GUS) staining and luciferase reporter assays confirmed that the 49-bp deletion in PmAP2L reduced its binding with Pmu-miRNA172a. Phylogenetic analysis and microsynteny analysis suggested that PmAP2L was not a PETALOSA TOE-type gene, and it might be a new gene controlling the formation of double flower in P. mume. Subsequently, overexpression of PmAP2L-D in tobacco led to a significant rise in the number of stamens and the conversion of stamens to petals. Furthermore, silencing of the homologue of RC5G0530900 in rose significantly reduced the number of petals. Using transient gene expression in P. mume flower buds, we determined the functional differences between PmAP2L-D and PmAP2-S in controlling flower development. Meanwhile, DNA-affinity purification sequencing (DAP-seq), yeast hybrid assays and luciferase reporter assays indicated that PmAP2L negatively regulated the floral organ identity genes by forming a repressor complex with PmTPL and PmHDA6/19. Overall, these findings indicate that the variation in PmAP2L is associated with differences in the regulation of genes responsible for floral organ identity, providing new insights into the double-flower trait and double-flower breeding in plants.

18.
Curr Biol ; 34(4): 881-894.e7, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38350447

In Arabidopsis, stomatal development and patterning require tightly regulated cell division and cell-fate differentiation that are controlled by key transcription factors and signaling molecules. To identify new regulators of stomatal development, we assay the transcriptomes of plants bearing enriched stomatal lineage cells that undergo active division. A member of the novel regulators at the plasma membrane (NRPM) family annotated as hydroxyproline-rich glycoproteins was identified to highly express in stomatal lineage cells. Overexpressing each of the four NRPM genes suppressed stomata formation, while the loss-of-function nrpm triple mutants generated severely overproduced stomata and abnormal patterning, mirroring those of the erecta receptor family and MAPKKK yoda null mutants. Manipulation of the subcellular localization of NRPM1 surprisingly revealed its regulatory roles as a peripheral membrane protein instead of a predicted cell wall protein. Further functional characterization suggests that NRPMs function downstream of the EPF1/2 peptide ligands and upstream of the YODA MAPK pathway. Genetic and cell biological analyses reveal that NRPM may promote the localization and function of the ERECTA receptor proteins at the cell surface. Therefore, we identify NRPM as a new class of signaling molecules at the plasma membrane to regulate many aspects of plant growth and development.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Plant Stomata/physiology , Cell Membrane/metabolism , Gene Expression Regulation, Plant
19.
Front Microbiol ; 15: 1308171, 2024.
Article En | MEDLINE | ID: mdl-38414765

Introduction: This study investigated the effects of dietary energy level on the antioxidant capability, immune function, and rectal microbiota in donkey jennets during the last 60 days of gestation. Methods: Fifteen pregnant DeZhou donkeys with age of 6.0 ± 0.1 years, body weight of 292 ± 33 kg, parity of 2.7 ± 0.1 parities and similar expected date of confinement (74 ± 4 days) were randomly allocated to three groups and feed three diets: high energy (10.92 MJ/kg, H), medium energy (10.49 MJ/kg, M), and low energy (9.94 MJ/kg, L). Results and Discussion: The serum activity of catalase (CAT), total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) in group M was significantly higher, whereas the concentrations of malondialdehyde (MDA), interleukin 1 (IL-1), IL-2, and IL-6 were lower than those recorded for groups H and L (p ≤ 0.05). The dietary energy level significantly affected rectal microbial community structure in the jennet donkeys 35 days and 7 days before the parturition (p ≤ 0.05). The abundances of norank_f_norank_o_Coriobacteriales genus was significantly higher (p ≤ 0.05) in group H, and the abundances of norank_f_norank_o_Mollicutes_RF39 and the Candidatus_Saccharimonas were higher in group L (p ≤ 0.05). The abundance of Fibrobacter in group M was significantly increased (p ≤ 0.05). The abundance of norank_f_norank_o_Coriobacteriales was positively correlated with average daily gain (ADG) and tumor necrosis factor-α (TNF-α) concentrations (p ≤ 0.05). The abundance of norank_f_norank_o_Mollicutes_RF39 was positively correlated with IL-2 and IL-6 concentrations. The abundance of Candidatus_Saccharimonas was positively correlated with CAT, T-SOD and GSH-Px activities (p ≤ 0.05). The abundance of Fibrobacter was positively correlated with CAT and T-SOD activities (p ≤ 0.05), but negatively correlated with IL-2 concentration (p ≤ 0.05). In conclusion, an appropriate dietary with an energy content of 10.49 MJ/kg for jennet donkeys during late gestation increased the prenatal antioxidant capacity, reduced inflammatory cytokines, and promoted fetal growth, and these changes were related to diet-induced changes in rectal microbiota compositions.

20.
Dalton Trans ; 53(9): 4035-4040, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38332728

Two carbonyl and o-NH2-NO2-containing energetic materials and their analogues were effectively designed, synthesized and fully characterized with multinuclear NMR, IR and elemental analyses. Their structures were also further confirmed via X-ray diffraction. Among them, compound 7 exhibits good potential for application as a secondary explosive with extremely high density (2.04 g cm-3), good sensitivity (IS > 40 J, FS > 360 N), and excellent calculated detonation performance (Dv = 8943 m s-1, P = 35.0 GPa). Furthermore, a detailed comparative study based on X-ray diffraction, Hirshfeld surfaces and 2D fingerprint plots among compounds 4, 7 and 9 has demonstrated that the density and detonation performance could be effectively improved via introducing a carbonyl group into fused-ring compounds. More importantly, the sensitivity of the resulting energetic materials did not deteriorate. Obviously, this strategy via introducing carbonyl, o-NH2-NO2 and nitroamino groups into fused-ring energetic compounds will help in the design of next-generation high-energy and insensitive fused-ring energetic materials.

...