Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Neurosci ; 55(6): 1424-1441, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35181969

RESUMEN

Adult newborn neurons are involved in memory encoding and extinction, but the neural mechanism is unclear. We found the adult newborn neurons at 4 weeks are recruited by learning and subjected to epigenetic regulations, consequently reducing their ability to be re-recruited later. After removal of the epigenetic blockage, Suv39h1 KO mice showed an increased recruiting number of aged newborn neurons and enhanced flexibility in learning tasks. Besides NRXN1, we found SHANK1, the synaptic scaffold protein, is one of the major targets of Suv39h1, regulating memory stability. Expression of Shank1 is transiently engaged to enhance synaptogenesis during learning and is strongly suppressed by Suv39h1 from 5 h after learning. Exogenously overexpression of Shank1 in dentate gyrus increased the density of mushroom spines and decreased the persistency of old memories. Our study indicated the activity-regulated epigenetic modification in newly matured newborn neurons in hippocampus insulates temporally distinct experiences and stabilizes old memories.


Asunto(s)
Hipocampo , Neuronas , Animales , Hipocampo/fisiología , Aprendizaje , Metiltransferasas , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Neuronas/fisiología , Proteínas Represoras
2.
Neuron ; 110(7): 1156-1172.e9, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35081333

RESUMEN

ASD-associated genes are enriched for synaptic proteins and epigenetic regulators. How those chromatin modulators establish ASD traits have remained unknown. We find haploinsufficiency of Ash1l causally induces anxiety and autistic-like behavior, including repetitive behavior, and alters social behavior. Specific depletion of Ash1l in forebrain induces similar ASD-associated behavioral defects. While the learning ability remains intact, the discrimination ability of Ash1l mutant mice is reduced. Mechanistically, deletion of Ash1l in neurons induces excessive synapses due to the synapse pruning deficits, especially during the post-learning period. Dysregulation of synaptic genes is detected in Ash1l mutant brain. Specifically, Eph receptor A7 is downregulated in Ash1l+/- mice through accumulating EZH2-mediated H3K27me3 in its gene body. Importantly, increasing activation of EphA7 in Ash1l+/- mice by supplying its ligand, ephrin-A5, strongly promotes synapse pruning and rescues discrimination deficits. Our results suggest that Ash1l haploinsufficiency is a highly penetrant risk factor for ASD, resulting from synapse pruning deficits.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/genética , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Haploinsuficiencia , N-Metiltransferasa de Histona-Lisina/genética , Ratones , Ratones Noqueados , Fenotipo , Receptor EphA1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...