Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Chembiochem ; : e202400564, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248206

RESUMEN

Directed evolution seeks to evolve target genes at a rate far exceeding the natural mutation rate, thereby endowing cellular and enzymatic properties with desired traits. In vivo continuous directed evolution achieves these purposes by generating libraries within living cells, enabling a continuous cycle of mutant generation and selection, enhancing the exploration of gene variants. Continuous evolution has become powerful tools for unraveling evolution mechanism and improving cellular and enzymatic properties. This review categorizes current continuous evolution into three distinct classes: non-targeted chromosomal, targeted chromosomal, and extra-chromosomal hypermutation approaches. It also compares various continuous evolution strategies based on different principles, providing a reference for selecting suitable methods for specific evolutionary goals. Furthermore, this review discusses the two primary limitations for further widespread application of in vivo continuous evolution, which are lack of general applicability and insufficient mutagenic capability. We envision that developing generally applicable mutagenic components and methods to enhance mutation rates for in vivo continuous evolution are promising future directions for wide range applications of continuous evolution.

2.
NPJ Parkinsons Dis ; 10(1): 146, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107320

RESUMEN

TFE3 and TFEB, as the master regulators of lysosome biogenesis and autophagy, are well characterized to enhance the synaptic protein α-synuclein degradation in protecting against Parkinson's disease (PD) and their levels are significantly decreased in the brain of PD patients. However, how TFE3 and TFEB are regulated during PD pathogenesis remains largely vague. Herein, we identified that programmed cell death 4 (PDCD4) promoted pathologic α-synuclein accumulation to facilitate PD development via suppressing both TFE3 and TFEB translation. Conversely, PDCD4 deficiency significantly augmented global and nuclear TFE3 and TFEB distributions to alleviate neurodegeneration in a mouse model of PD with overexpressing α-synuclein in the striatum. Mechanistically, like TFEB as we reported before, PDCD4 also suppressed TFE3 translation, rather than influencing its transcription and protein stability, to restrain its nuclear translocation and lysosomal functions, eventually leading to α-synuclein aggregation. We proved that the two MA3 domains of PDCD4 mediated the translational suppression of TFE3 through binding to its 5'-UTR of mRNA in an eIF-4A dependent manner. Based on this, we developed a blood-brain barrier penetrating RVG polypeptide modified small RNA drug against pdcd4 to efficiently prevent α-synuclein neurodegeneration in improving PD symptoms by intraperitoneal injections. Together, we suggest PDCD4 as a PD-risk protein to facilitate α-synuclein neurodegeneration via suppressing TFE3 and TFEB translation and further provide a potential small RNA drug against pdcd4 to treat PD by intraperitoneal injections.

3.
Anal Chem ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140526

RESUMEN

Developing an activity detection platform for hyaluronidase (HAase) is crucial for diagnosing and treating cancer. However, traditional detection of HAase is based on changes in the flow rate caused by viscosity or requires complex modifications and processing, which limits the detection accuracy and sensitivity. Herein, hyaluronic acid (HA)-modified mesoporous-based heterochannels (mesoporous carbon-doped γ-Fe2O3 nanoparticles/anodized aluminum oxide, MC-γ-Fe2O3/AAO) featuring ordered 3D transport frameworks and a photothermal property were developed for high performance HAase detection. The HA molecules on the surface of the mesoporous layer provide abundant active sites for HAase detection. An improved ionic current was realized after enzymatic hydrolysis reactions between HA and HAase due to enhanced surface charges and more hydrophilicity, leading to highly sensitive and accurate HAase detection. Notably, the detection performance can be further upgraded with the assistance of the photothermal property of γ-Fe2O3. An amplified detection current signal was achieved owing to a synergistic effect between ion currents and photoresponsive currents. A wide linear detection range from 1 to 50 U/mL and a low detection limit of 0.348 U/mL were obtained, achieving a 2% improvement under illumination. Importantly, the heterochannels have also been successfully applied for HAase detection in fetal bovine serum samples, manifesting considerable application prospects. This work provides a new strategy in constructing photoresponsive nanochannels with a photothermal property for a highly efficient biosensing platform.

4.
Neurochem Int ; 179: 105834, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39142353

RESUMEN

Alcohol exposure in adolescence is considered a major cause of cognitive impairments later in life including spatial learning and memory. Integrated stress response (ISR), a program of conservative translation and transcription, is crucial in synaptic plasticity and memory. Although previous studies have elucidated ISR in different brain areas involved in learning and memory disorders, the impact of ISR on learning and memory following adolescent alcohol exposure remains unclear. Here, we demonstrated that adolescent intermittent ethanol (AIE) exposure caused spatial learning and memory impairment, combined with neuronal damage in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc) and hippocampus (HIP) in adult rats. Moreover, integrated stress response inhibitor (ISRIB) administration not only improved spatial learning and memory impairment and neuronal damage but also inhibited the endoplasmic reticulum stress (ER) and reversed changes in synaptic proteins. These findings suggested that ISRIB ameliorates AIE exposure-induced spatial learning and memory deficits by improving neural morphology and synaptic function through inhibiting ER stress signaling pathway in the mPFC, NAc and HIP in adulthood. Our findings may enhance comprehension of cognitive function and neuronal effects of adolescent ethanol exposure and ISRIB treatment may be an underlying potential option for addressing alcohol-induced learning and memory deficits.


Asunto(s)
Etanol , Trastornos de la Memoria , Ratas Sprague-Dawley , Aprendizaje Espacial , Animales , Masculino , Etanol/toxicidad , Etanol/administración & dosificación , Ratas , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Aprendizaje Espacial/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología
5.
Mol Cancer ; 23(1): 179, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215345

RESUMEN

Plenty of circRNAs have been reported to play an important role in colorectal cancer (CRC), while the reason of abnormal circRNA expression in cancer still keep elusive. Here, we found that m7G RNA modifications were enriched in some circRNAs, these m7G modifications in circRNAs were catalyzed by METTL1, and the GG motif was the main site preference for m7G modifications in circRNAs. We further confirmed that METTL1 played a cancer-promoting role in CRC. We then screened a highly expressed circRNA, called circKDM1A, and found that METTL1 prevented the degradation of circKDM1A by m7G modification. CircKDM1A was further verified to promote proliferation, invasion and migration of CRC in vivo and in vitro. Its cancer-promoting ability was weakened after the m7G site mutation. CircKDM1A was verified to activate AKT pathway by upregulating PDK1, consequently promoting CRC progression. These results suggest that m7G-modified circRNA promotes CRC progression via activating AKT pathway. Our study uncovers an essential physiological function and mechanism of METTL1-mediated m7G modification in the regulation of circRNA stability and cancer progression.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Metiltransferasas , ARN Circular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Humanos , ARN Circular/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Animales , Ratones , Línea Celular Tumoral , Movimiento Celular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Ratones Desnudos
6.
Research (Wash D C) ; 7: 0400, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38939042

RESUMEN

Short-chain fatty acids (SCFAs) have been increasingly evidenced to be important bioactive metabolites of the gut microbiota and transducers in controlling diverse psychiatric or neurological disorders via the microbiota-gut-brain axis. However, the precise mechanism by which brain SCFAs extert multiple beneficial effects is not completely understood. Our previous research has demonstrated that the acetyl-coenzyme A synthetase short-chain family member 2 (ACSS2) is a novel target of the rapid and long-lasting antidepressant responses. Here, we show that micromolar SCFAs significantly augment both total cellular and nuclear ACSS2 to trigger tryptophan hydroxylase 2 (TPH2) promoter histone acetylation and its transcription in SH-SY5Y cells. In chronic-restraint-stress-induced depression mice, neuronal ACSS2 knockdown by stereotaxic injection of adeno-associated virus in the hippocampus abolished SCFA-mediated improvements in depressive-like behaviors of mice, supporting that ACSS2 is required for SCFA-mediated antidepressant responses. Mechanistically, the peroxisome-proliferator-activated receptor gamma (PPARγ) is identified as a novel partner of ACSS2 to activate TPH2 transcription. Importantly, PPARγ is also responsible for SCFA-mediated antidepressant-like effects via ACSS2-TPH2 axis. To further support brain SCFAs as a therapeutic target for antidepressant effects, d-mannose, which is a naturally present hexose, can significantly reverse the dysbiosis of gut microbiota in the chronic-restraint-stress-exposure mice and augment brain SCFAs to protect against the depressive-like behaviors via ACSS2-PPARγ-TPH2 axis. In summary, brain SCFAs can activate ACSS2-PPARγ-TPH2 axis to play the antidepressive-like effects, and d-mannose is suggested to be an inducer of brain SCFAs in resisting depression.

7.
J Med Virol ; 96(6): e29743, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38884419

RESUMEN

As one of the most effective measures to prevent seasonal influenza viruses, annual influenza vaccination is globally recommended. Nevertheless, evidence regarding the impact of repeated vaccination to contemporary and future influenza has been inconclusive. A total of 100 subjects singly or repeatedly immunized with influenza vaccines including 3C.2a1 or 3C.3a1 A(H3N2) during 2018-2019 and 2019-2020 influenza season were recruited. We investigated neutralization antibody by microneutralization assay using four antigenically distinct A(H3N2) viruses circulating from 2018 to 2023, and tracked the dynamics of B cell receptor (BCR) repertoire for consecutive vaccinations. We found that vaccination elicited cross-reactive antibody responses against future emerging strains. Broader neutralizing antibodies to A(H3N2) viruses and more diverse BCR repertoires were observed in the repeated vaccination. Meanwhile, a higher frequency of BCR sequences shared among the repeated-vaccinated individuals with consistently boosting antibody response was found than those with a reduced antibody response. Our findings suggest that repeated seasonal vaccination could broaden the breadth of antibody responses, which may improve vaccine protection against future emerging viruses.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Reacciones Cruzadas , Subtipo H3N2 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Gripe Humana/prevención & control , Gripe Humana/inmunología , Gripe Humana/virología , Adulto , Reacciones Cruzadas/inmunología , Masculino , Femenino , Vacunación , Persona de Mediana Edad , Adulto Joven , Pruebas de Neutralización , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos B/genética , Adolescente
8.
Commun Biol ; 7(1): 756, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907105

RESUMEN

Tuberous sclerosis complex 2 (TSC2) crucially suppresses Rheb activity to prevent mTORC1 activation. However, mutations in TSC genes lead to mTORC1 overactivation, thereby causing various developmental disorders and cancer. Therefore, the discovery of novel Rheb inhibitors is vital to prevent mTOR overactivation. Here, we reveals that the anti-inflammatory cytokine IL-37d can bind to lysosomal Rheb and suppress its activity independent of TSC2, thereby preventing mTORC1 activation. The binding of IL-37d to Rheb switch-II subregion destabilizes the Rheb-mTOR and mTOR-S6K interactions, further halting mTORC1 signaling. Unlike TSC2, IL-37d is reduced under ethanol stimulation, which results in mitigating the suppression of lysosomal Rheb-mTORC1 activity. Consequently, the recombinant human IL-37d protein (rh-IL-37d) with a TAT peptide greatly improves alcohol-induced liver disorders by hindering Rheb-mTORC1 axis overactivation in a TSC2- independent manner. Together, IL-37d emerges as a novel Rheb suppressor independent of TSC2 to terminate mTORC1 activation and improve abnormal lipid metabolism in the liver.


Asunto(s)
Hepatopatías Alcohólicas , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteína Homóloga de Ras Enriquecida en el Cerebro , Transducción de Señal , Proteína 2 del Complejo de la Esclerosis Tuberosa , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Humanos , Animales , Ratones , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/genética , Interleucina-1/metabolismo , Interleucina-1/genética , Ratones Endogámicos C57BL , Masculino , Células HEK293
9.
Immunohorizons ; 8(6): 415-430, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38885041

RESUMEN

The individual HLA-related susceptibility to emerging viral diseases such as COVID-19 underscores the importance of understanding how HLA polymorphism influences peptide presentation and T cell recognition. Similar to HLA-A*0101, which is one of the earliest identified HLA alleles among the human population, HLA-A*2601 possesses a similar characteristic for the binding peptide and acts as a prevalent allomorph in HLA-I. In this study, we found that, compared with HLA-A*0101, HLA-A*2601 individuals exhibit distinctive features for the T cell responses to SARS-CoV-2 and influenza virus after infection and/or vaccination. The heterogeneous T cell responses can be attributed to the distinct preference of HLA-A*2601 and HLA-A*0101 to T cell epitope motifs with negative-charged residues at the P1 and P3 positions, respectively. Furthermore, we determined the crystal structures of the HLA-A*2601 complexed to four peptides derived from SARS-CoV-2 and human papillomavirus, with one structure of HLA-A*0101 for comparison. The shallow pocket C of HLA-A*2601 results in the promiscuous presentation of peptides with "switchable" bulged conformations because of the secondary anchor in the median portion. Notably, the hydrogen bond network formed between the negative-charged P1 anchors and the HLA-A*2601-specific residues lead to a "closed" conformation and solid placement for the P1 secondary anchor accommodation in pocket A. This insight sheds light on the intricate relationship between HLA I allelic allomorphs, peptide binding, and the immune response and provides valuable implications for understanding disease susceptibility and potential vaccine design.


Asunto(s)
COVID-19 , Epítopos de Linfocito T , SARS-CoV-2 , Humanos , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/genética , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/inmunología , COVID-19/virología , Antígenos HLA-A/inmunología , Antígenos HLA-A/genética , Antígenos HLA-A/metabolismo , Antígenos HLA-A/química , Péptidos/inmunología , Péptidos/química , Alelos , Antígeno HLA-A1
10.
Analyst ; 149(13): 3522-3529, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787653

RESUMEN

Bioinspired nanochannel-based sensors have elicited significant interest because of their excellent sensing performance, and robust mechanical and tunable chemical properties. However, the existing designs face limitations due to material constraints, which hamper broader application possibilities. Herein, a heteromembrane system composed of a periodic mesoporous organosilica (PMO) layer with three-dimensional (3D) network nanochannels is constructed for glutathione (GSH) detection. The unique hierarchical pore architecture provides a large surface area, abundant reaction sites and plentiful interconnected pathways for rapid ionic transport, contributing to efficient and sensitive detection. Moreover, the thioether groups in nanochannels can be selectively cleaved by GSH to generate hydrophilic thiol groups. Benefiting from the increased hydrophilic surface, the proposed sensor achieves efficient GSH detection with a detection limit of 1.2 µM by monitoring the transmembrane ionic current and shows good recovery ranges in fetal bovine serum sample detection. This work paves an avenue for designing and fabricating nanofluidic sensing systems for practical and biosensing applications.


Asunto(s)
Glutatión , Límite de Detección , Compuestos de Organosilicio , Glutatión/química , Glutatión/análisis , Glutatión/sangre , Porosidad , Compuestos de Organosilicio/química , Animales , Bovinos , Técnicas Biosensibles/métodos , Membranas Artificiales , Técnicas Electroquímicas/métodos
11.
World J Clin Cases ; 12(13): 2243-2247, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38808338

RESUMEN

BACKGROUND: Peripheral FDG accumulation in a hepatic hemangioma presenting in a patient with prolonged fever is rare. Therefore, clinicians should pay close attention to patients with hepatic mass. CASE SUMMARY: A 54-year-old woman with a 4-wk history of daily fevers was admitted to our hospital. A whole body 18F-Fluordesoxyglucose (PET-FDG) positron emission tomography/computed tomography (PET/CT) was performed to elucidate the source of the fever. However, whole body 18F-FDG PET/CT raised the suspicion of a malignant lesion because of peripheral FDG accumulation (SUVmax 3.5 g/mL) higher than that of the normal liver parenchyma (SUVmax 1.6 g/mL) surrounding a hypoactive area, and no other abnormalities were showed. Subsequently, the patient underwent liver mass resection. Histopathology showed a hepatic cavernous hemangioma with fatty infiltration around the lesion. The fever disappeared four days after surgery and the patient did not present any complications during follow-up. CONCLUSION: Fatty infiltration in the peripheral parts of hepatic cavernous hemangioma may lead to subacute inflammation which further activate the Kupffer cells. This may cause prolonged fever and peripheral rim FDG accumulation on PET/CT.

12.
J Hazard Mater ; 472: 134594, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38754233

RESUMEN

Polybrominated diphenyl ethers (PBDEs), widely used as flame retardants, easily enter the environment, thus posing environmental and health risks. Iron materials play a key role during the migration and transformation of PBDEs. This article reviews the processes and mechanisms of adsorption, degradation, and biological uptake and transformation of PBDEs affected by iron materials in the environment. Iron materials can effectively adsorb PBDEs through hydrophobic interactions, π-π interactions, hydrogen/halogen bonds, electrostatic interactions, coordination interactions, and pore filling interactions. In addition, they are beneficial for the photodegradation, reduction debromination, and advanced oxidation degradation and debromination of PBDEs. The iron material-microorganism coupling technology affects the uptake and transformation of PBDEs. In addition, iron materials can reduce the uptake of PBDEs in plants, affecting their bioavailability. The species, concentration, and size of iron materials affect plant physiology. Overall, iron materials play a bidirectional role in the biological uptake and transformation of PBDEs. It is necessary to strengthen the positive role of iron materials in reducing the environmental and health risks caused by PBDEs. This article provides innovative ideas for the rational use of iron materials in controlling the migration and transformation of PBDEs in the environment.


Asunto(s)
Biotransformación , Éteres Difenilos Halogenados , Hierro , Éteres Difenilos Halogenados/metabolismo , Éteres Difenilos Halogenados/química , Hierro/química , Hierro/metabolismo , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/química , Retardadores de Llama/metabolismo , Adsorción , Plantas/metabolismo
13.
Br J Dermatol ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752336

RESUMEN

BACKGROUND: Psoriasis is a prevalent chronic inflammatory dermatosis characterized by excessive proliferation of keratinocytes. Protein lysine 2-hydroxyisobutyrylation (Khib) is a newly identified post-translational modification that regulates various biological processes. Abnormal Khib modification has been closely associated with the development of autoimmune diseases. OBJECTIVE: To investigate the abnormal Khib profile and its pathogenic role in psoriasis. METHODS: We utilized liquid chromatography-tandem mass spectrometry to analyze Khib-modified proteins in the epidermis of psoriasis and healthy controls. Mutated cells and mice with downregulated Ebp1Khib210 were generated to investigate its functional effects in psoriasis. RESULTS: The omic analysis revealed dysregulation of Khib modification in psoriatic lesions, exhibiting a distinct profile compared to controls. We observed the downregulation of Ebp1Khib210 in psoriatic lesions and IMQ-induced psoriatic mice. Notably, the expression of Ebp1Khib210 was upregulated in psoriatic patients following effective treatment. Decreased Ebp1Khib210 enhanced keratinocyte viability, proliferation, and survival while inhibiting apoptosis in vitro. Additionally, Pa2g4K210A mice with downregulated Ebp1Khib210 exhibited more severe psoriatic lesions and enhanced keratinocyte proliferation. Moreover, we found that Ebp1K210A mutation increased the interaction between Ebp1 and nuclear Akt, thereby inhibiting MDM2-mediated TIF-IA ubiquitination, and resulting to increased rRNA synthesis and keratinocyte proliferation. The downregulation of Ebp1Khib210 was attributed to inflammation-induced increases in HDAC2 expression. CONCLUSION: Our findings demonstrate that downregulation of Ebp1Khib210 promotes keratinocyte proliferation through modulation of Akt signaling and TIF-IA-mediated rRNA synthesis. These insights into Khib modification provide a better understanding of the pathogenesis of psoriasis and suggest potential therapeutic targets.

14.
Front Oncol ; 14: 1357145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567148

RESUMEN

Objective: To investigate the value of predicting axillary lymph node (ALN) metastasis based on intratumoral and peritumoral dynamic contrast-enhanced MRI (DCE-MRI) radiomics and clinico-radiological characteristics in breast cancer. Methods: A total of 473 breast cancer patients who underwent preoperative DCE-MRI from Jan 2017 to Dec 2020 were enrolled. These patients were randomly divided into training (n=378) and testing sets (n=95) at 8:2 ratio. Intratumoral regions (ITRs) of interest were manually delineated, and peritumoral regions of 3 mm (3 mmPTRs) were automatically obtained by morphologically dilating the ITR. Radiomics features were extracted, and ALN metastasis-related radiomics features were selected by the Mann-Whitney U test, Z score normalization, variance thresholding, K-best algorithm and least absolute shrinkage and selection operator (LASSO) algorithm. Clinico-radiological risk factors were selected by logistic regression and were also used to construct predictive models combined with radiomics features. Then, 5 models were constructed, including ITR, 3 mmPTR, ITR+3 mmPTR, clinico-radiological and combined (ITR+3 mmPTR+ clinico-radiological) models. The performance of models was assessed by sensitivity, specificity, accuracy, F1 score and area under the curve (AUC) of receiver operating characteristic (ROC), calibration curves and decision curve analysis (DCA). Results: A total of 2264 radiomics features were extracted from each region of interest (ROI), 3 and 10 radiomics features were selected for the ITR and 3 mmPTR, respectively. 5 clinico-radiological risk factors were selected, including lesion size, human epidermal growth factor receptor 2 (HER2) expression, vascular cancer thrombus status, MR-reported ALN status, and time-signal intensity curve (TIC) type. In the testing set, the combined model showed the highest AUC (0.839), specificity (74.2%), accuracy (75.8%) and F1 Score (69.3%) among the 5 models. DCA showed that it had the greatest net clinical benefit compared to the other models. Conclusion: The intra- and peritumoral radiomics models based on DCE-MRI could be used to predict ALN metastasis in breast cancer, especially for the combined model with clinico-radiological characteristics showing promising clinical application value.

15.
Pharmacol Res ; 202: 107136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460778

RESUMEN

CREB-regulated transcription coactivator 1 (CRTC1), a pivotal synaptonuclear messenger, regulates synaptic plasticity and transmission to prevent depression. Despite exhaustive investigations into CRTC1 mRNA reductions in the depressed mice, the regulatory mechanisms governing its transcription remain elusive. Consequently, exploring rapid but non-toxic CRTC1 inducers at the transcriptional level is important for resisting depression. Here, we demonstrate the potential of D-arabinose, a unique monosaccharide prevalent in edible-medicinal plants, to rapidly enter the brain and induce CRTC1 expression, thereby eliciting rapid-acting and persistent antidepressant responses in chronic restrain stress (CRS)-induced depressed mice. Mechanistically, D-arabinose induces the expressions of peroxisome proliferator-activated receptor gamma (PPARγ) and transcription factor EB (TFEB), thereby activating CRTC1 transcription. Notably, we elucidate the pivotal role of the acetyl-CoA synthetase short-chain family member 2 (ACSS2) as an obligatory mediator for PPARγ and TFEB to potentiate CRTC1 transcription. Furthermore, D-arabinose augments ACSS2-dependent CRTC1 transcription by activating AMPK through lysosomal AXIN-LKB1 pathway. Correspondingly, the hippocampal down-regulations of ACSS2, PPARγ or TFEB alone failed to reverse CRTC1 reductions in CRS-exposure mice, ultimately abolishing the anti-depressant efficacy of D-arabinose. In summary, our study unveils a previously unexplored role of D-arabinose in activating the ACSS2-PPARγ/TFEB-CRTC1 axis, presenting it as a promising avenue for the prevention and treatment of depression.


Asunto(s)
Arabinosa , PPAR gamma , Ratones , Animales , PPAR gamma/genética , PPAR gamma/metabolismo , Arabinosa/farmacología , Arabinosa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Encéfalo/metabolismo
16.
Infect Immun ; 92(4): e0050523, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38477589

RESUMEN

The inflammasome is a pivotal component of the innate immune system, acting as a multiprotein complex that plays an essential role in detecting and responding to microbial infections. Salmonella Enteritidis have evolved multiple mechanisms to regulate inflammasome activation and evade host immune system clearance. Through screening S. Enteritidis C50336ΔfliC transposon mutant library, we found that the insertion mutant of dinJ increased inflammasome activation. In this study, we demonstrated the genetic connection between the antitoxin DinJ and the toxin YafQ in S. Enteritidis, confirming their co-transcription. The deletion mutant ΔfliCΔdinJ increased cell death and IL-1ß secretion in J774A.1 cells. Western blotting analysis further showed elevated cleaved Caspase-1 product (p10 subunits) and IL-1ß secretion in cells infected with ΔfliCΔdinJ compared to cells infected with ΔfliC. DinJ was found to inhibit canonical inflammasome activation using primary bone marrow-derived macrophages (BMDMs) from Casp-/- C57BL/6 mice. Furthermore, DinJ specifically inhibited NLRP3 inflammasome activation, as demonstrated in BMDMs from Nlrp3-/- and Nlrc4-/- mice. Fluorescence resonance energy transfer (FRET) experiments confirmed the translocation of DinJ into host cells during infection. Finally, we revealed that DinJ could inhibit the secretion of IL-1ß and IL-18 in vivo, contributing to S. Enteritidis evading host immune clearance. In summary, our findings provide insights into the role of DinJ in modulating the inflammasome response during S. Enteritidis infection, highlighting its impact on inhibiting inflammasome activation and immune evasion.


Asunto(s)
Antitoxinas , Inflamasomas , Animales , Ratones , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Salmonella enteritidis , Ratones Endogámicos C57BL , Macrófagos , Caspasa 1/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo
17.
Cell Rep ; 43(2): 113787, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38363681

RESUMEN

The spontaneous migration of bone marrow neutrophils (BMNs) is typically induced by distant tumor cells during the early stage of the tumor and critically controls tumor progression and metastases. Therefore, identifying the key molecule that prevents this process is extremely important for suppressing tumors. Interleukin-37 (IL-37) can suppress pro-inflammatory cytokine generation via an IL-1R8- or Smad3-mediated pathway. Here, we demonstrate that human neutrophil IL-37 is responsively reduced by tumor cells and the recombinant IL-37 isoform d (IL-37d) significantly inhibits spontaneous BMN migration and tumor lesion formation in the lung by negatively modulating CCAAT/enhancer binding protein beta (C/EBPß) in a Lewis lung carcinoma (LLC)-inducing lung cancer mouse model. Mechanistically, IL-37d promotes C/EBPß ubiquitination degradation by facilitating ubiquitin ligase COP1 recruitment and disrupts C/EBPß DNA binding abilities, thereby reducing neutrophil ATP generation and migration. Our work reveals an anti-tumor mechanism for IL-37 via destabilization of C/EBPß to prevent spontaneous BMN migration and tumor progression.


Asunto(s)
Carcinoma Pulmonar de Lewis , Neutrófilos , Ratones , Animales , Humanos , Neutrófilos/metabolismo , Citocinas/metabolismo , Pulmón/metabolismo
18.
Cell Death Differ ; 31(4): 479-496, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38332049

RESUMEN

The appropriate transcriptional activity of PPARγ is indispensable for controlling inflammation, tumor and obesity. Therefore, the identification of key switch that couples PPARγ activation with degradation to sustain its activity homeostasis is extremely important. Unexpectedly, we here show that acetyl-CoA synthetase short-chain family member 2 (ACSS2) critically controls PPARγ activity homeostasis via SIRT1 to enhance adipose plasticity via promoting white adipose tissues beiging and brown adipose tissues thermogenesis. Mechanistically, ACSS2 binds directly acetylated PPARγ in the presence of ligand and recruits SIRT1 and PRDM16 to activate UCP1 expression. In turn, SIRT1 triggers ACSS2 translocation from deacetylated PPARγ to P300 and thereafter induces PPARγ polyubiquitination and degradation. Interestingly, D-mannose rapidly activates ACSS2-PPARγ-UCP1 axis to resist high fat diet induced obesity in mice. We thus reveal a novel ACSS2 function in coupling PPARγ activation with degradation via SIRT1 and suggest D-mannose as a novel adipose plasticity regulator via ACSS2 to prevent obesity.


Asunto(s)
Homeostasis , PPAR gamma , Sirtuina 1 , Animales , PPAR gamma/metabolismo , Ratones , Sirtuina 1/metabolismo , Sirtuina 1/genética , Acetato CoA Ligasa/metabolismo , Acetato CoA Ligasa/genética , Ratones Endogámicos C57BL , Humanos , Obesidad/metabolismo , Obesidad/patología , Factores de Transcripción/metabolismo , Dieta Alta en Grasa , Masculino , Tejido Adiposo Pardo/metabolismo , Termogénesis , Manosa/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Tejido Adiposo Blanco/metabolismo , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tejido Adiposo/metabolismo
20.
Analyst ; 149(5): 1464-1472, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38284827

RESUMEN

Copper ions (Cu2+), as a crucial trace element, play a vital role in living organisms. Thus, the detection of Cu2+ is of great significance for disease prevention and diagnosis. Nanochannel devices with an excellent nanoconfinement effect show great potential in recognizing and detecting Cu2+ ions. However, these devices often require complicated modification and treatment, which not only damages the membrane structure, but also induces nonspecific, low-sensitivity and non-repeatable detection. Herein, a 2D MXene-carboxymethyl chitosan (MXene/CMC) freestanding membrane with ordered lamellar channels was developed by a super-assembly strategy. The introduction of CMC provides abundant space charges, improving the nanoconfinement effect of the nanochannel. Importantly, the CMC can chelate with Cu2+ ions, endowing the MXene/CMC with the ability to detect Cu2+. The formation of CMC-Cu2+ complexes decreases the space charges, leading to a discernible variation in the current signal. Therefore, MXene/CMC can achieve highly sensitive and stable Cu2+ detection based on the characteristics of nanochannel composition. The linear response range for Cu2+ detection is 10-9 to 10-5 M with a low detection limit of 0.095 nM. Notably, MXene/CMC was successfully applied for Cu2+ detection in real water and fetal bovine serum samples. This work provides a simple, highly sensitive and stable detection platform based on the properties of the nanochannel composition.


Asunto(s)
Quitosano , Nitritos , Oligoelementos , Elementos de Transición , Cobre , Quitosano/química , Iones/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA