Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
Small ; : e2400732, 2024 May 19.
Article En | MEDLINE | ID: mdl-38764258

Currently, methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis is a clinically life-threatening disease, however, long-term antibiotic treatment can lead to bacterial resistance, posing a huge challenge to treatment and public health. In this study, glucose-derived carbon spheres loaded with zinc oxide (ZnO@HTCS) are successfully constructed. This composite demonstrates the robust ability to generate reactive oxygen species (ROS) under ultrasound (US) irradiation, eradicating 99.788% ± 0.087% of MRSA within 15 min and effectively treating MRSA-induced osteomyelitis infection. Piezoelectric force microscopy tests and finite element method simulations reveal that the ZnO@HTCS composite exhibits superior piezoelectric catalytic performance compared to pure ZnO, making it a unique piezoelectric sonosensitizer. Density functional theory calculations reveal that the formation of a Mott-Schottky heterojunction and an internal piezoelectric field within the interface accelerates the electron transfer and the separation of electron-hole pairs. Concurrently, surface vacancies of the composite enable the adsorption of a greater amount of oxygen, enhancing the piezoelectric catalytic effect and generating a substantial quantity of ROS. This work not only presents a promising approach for augmenting piezoelectric catalysis through construction of a Schottky heterojunction interface but also provides a novel, efficient therapeutic strategy for treating osteomyelitis.

2.
medRxiv ; 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38562724

Background: Quantitative transport mapping (QTM) of blood velocity, based on the transport equation has been demonstrated higher accuracy and sensitivity of perfusion quantification than the traditional Kety's method-based blood flow (Kety flow). This study aimed to investigate the associations between QTM velocity and cognitive function in Alzheimer's disease (AD) using multiple post-labeling delay arterial spin labeling (ASL) MRI. Methods: A total of 128 subjects (21 normal controls (NC), 80 patients with mild cognitive impairment (MCI), and 27 AD) were recruited prospectively. All participants underwent MRI examination and neuropsychological evaluation. QTM velocity and traditional Kety flow maps were computed from multiple delay ASL. Regional quantitative perfusion measurements were performed and compared to study group differences. We tested the hypothesis that cognition declines with reduced cerebral blood flow with consideration of age and gender effects. Results: In cortical gray matter (GM) and the hippocampus, QTM velocity and Kety flow showed decreased values in AD group compared to NC and MCI groups; QTM velocity, but not Kety flow, showed a significant difference between MCI and NC groups. QTM velocity and Kety flow showed values decreasing with age; QTM velocity, but not Kety flow, showed a significant gender difference between male and female. QTM velocity and Kety flow in the hippocampus were positively correlated with cognition, including global cognition, memory, executive function, and language function. Conclusion: This study demonstrated an increased sensitivity of QTM velocity as compared with the traditional Kety flow. Specifically, we observed only in QTM velocity, reduced perfusion velocity in GM and the hippocampus in MCI compared with NC. Both QTM velocity and Kety flow demonstrated reduction in AD vs controls. Decreased QTM velocity and Kety flow in the hippocampus were correlated with cognitive measures. These findings suggest QTM velocity as an improved biomarker for early AD blood flow alterations.

3.
IEEE Trans Med Imaging ; PP2024 Apr 01.
Article En | MEDLINE | ID: mdl-38557622

Ophthalmic diseases such as central serous chorioretinopathy (CSC) significantly impair the vision of millions of people globally. Precise segmentation of choroid and macular edema is critical for diagnosing and treating these conditions. However, existing 3D medical image segmentation methods often fall short due to the heterogeneous nature and blurry features of these conditions, compounded by medical image clarity issues and noise interference arising from equipment and environmental limitations. To address these challenges, we propose the Spectrum Analysis Synergy Axial-Spatial Network (SASAN), an approach that innovatively integrates spectrum features using the Fast Fourier Transform (FFT). SASAN incorporates two key modules: the Frequency Integrated Neural Enhancer (FINE), which mitigates noise interference, and the Axial-Spatial Elementum Multiplier (ASEM), which enhances feature extraction. Additionally, we introduce the Self-Adaptive Multi-Aspect Loss (LSM), which balances image regions, distribution, and boundaries, adaptively updating weights during training. We compiled and meticulously annotated the Choroid and Macular Edema OCT Mega Dataset (CMED-18k), currently the world's largest dataset of its kind. Comparative analysis against 13 baselines shows our method surpasses these benchmarks, achieving the highest Dice scores and lowest HD95 in the CMED and OIMHS datasets. Our code is publicly available at https://github.com/IMOP-lab/SASAN-Pytorch.

4.
Abdom Radiol (NY) ; 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38619612

OBJECTIVE: Portal hypertension leads to hepatic artery dilatation and a higher risk of bleeding. We tried to identify the bleeding risk after gastroesophageal varices (GOV) treatment using hepatic artery diameter of contrast-enhanced CT. METHODS: Retrospective retrieval of 258 patients with cirrhosis who underwent contrast-enhanced CT from January 2022 to May 2023 and endoscopy within one month thereafter at Hainan Affiliated Hospital of Hainan Medical University. Cirrhotic patients before GOV treatment were used as the test cohort (n = 199), and cirrhotic patients after GOV treatment were used as the validation cohort (n = 59). The grading and bleeding risk was classified according to the endoscopic findings. Arterial-phase images of contrast-enhanced CT were used for coronal reconstruction, and the midpoint diameter of the hepatic artery was measured on coronal images. The optimal cutoff value for identifying bleeding risk was analyzed and calculated in the test cohort, and its diagnostic performance was evaluated in the validation cohort. RESULTS: In the test cohort, hepatic artery diameters were significantly higher in high-risk GOV than in low-risk GOV [4.69 (4.31, 5.56) vs. 3.10 (2.59, 3.77), P < 0.001]. With a hepatic artery diameter cutoff value of 4.06 mm, the optimal area under the operating characteristic curve was 0.940 (95% confidence interval: 0.908-0.972), with a sensitivity of 0.887, a specificity of 0.892, a positive predictive value of 0.904, and a negative predictive value of 0.874 for identifying bleeding risk in the test cohort, while in the validation cohort, the sensitivity was 0.885, specificity was 0.939, positive predictive value was 0.920, and negative predictive value was 0.912. CONCLUSION: Hepatic artery diameter has high diagnostic performance in identifying bleeding risk after GOV treatment.

5.
Brain Res ; 1833: 148851, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38479491

PURPOSE: To investigate white matter microstructural abnormalities caused by radiotherapy in nasopharyngeal carcinoma (NPC) patients using MRI high-angular resolution diffusion imaging (HARDI). METHODS: We included 127 patients with pathologically confirmed NPC: 36 in the pre-radiotherapy group, 29 in the acute response period (post-RT-AP), 23 in the early delayed period (post-RT-ED) group, and 39 in the late-delayed period (post-RT-LD) group. HARDI data were acquired for each patient, and dispersion parameters were calculated to compare the differences in specific fibre bundles among the groups. The Montreal Neurocognitive Assessment (MoCA) was used to evaluate neurocognitive function, and the correlations between dispersion parameters and MoCA were analysed. RESULTS: In the right cingulum frontal parietal bundles, the fractional anisotropy value decreased to the lowest level post-RT-AP and then reversed and increased post-RT-ED and post-RT-LD. The mean, axial, and radial diffusivity were significantly increased in the post-RT-AP (p < 0.05) and decreased in the post-RT-ED and post-RT-LD groups to varying degrees. MoCA scores were decreased post-radiotherapy than those before radiotherapy (p = 0.005). MoCA and mean diffusivity exhibited a mild correlation in the left cingulum frontal parahippocampal bundle. CONCLUSIONS: White matter tract changes detected by HARDI are potential biomarkers for monitoring radiotherapy-related brain damage in NPC patients.


Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , White Matter , Humans , Male , White Matter/radiation effects , White Matter/diagnostic imaging , White Matter/pathology , Female , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Carcinoma/diagnostic imaging , Middle Aged , Adult , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/pathology , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Radiation Injuries/diagnostic imaging , Radiation Injuries/pathology , Aged , Anisotropy , Brain/pathology , Brain/radiation effects , Brain/diagnostic imaging
6.
Neuroscience ; 537: 141-150, 2024 Jan 26.
Article En | MEDLINE | ID: mdl-38042250

Diagnosing posttraumatic stress disorder (PTSD) using only single-modality images is controversial. We aimed to use multimodal magnetic resonance imaging (MRI) combining structural, diffusion, and functional MRI to possibly provide a more comprehensive viewpoint on the decisive characteristics of PTSD patients. Typhoon-exposed individuals with (n = 26) and without PTSD (n = 32) and healthy volunteers (n = 30) were enrolled. Five MRI features from three modalities, including two resting-state functional MRI (rs-fMRI) features (amplitude of low-frequency fluctuation, ALFF; and regional homogeneity, ReHo), one structural MRI feature (gray matter density, GM), and two diffusion tensor imaging (DTI) features (fractional anisotropy, FA; and mean diffusivity, MD) were investigated simultaneously with a multimodal canonical correlation analysis + joint independent component analysis model to identify abnormalities in the PTSD brain. We identified statistical differences between PTSD patients and healthy controls in terms of 1 rs-fMRI (ALFF, ReHo) alterations in the superior frontal gyrus, precuneus, inferior parietal lobule (IPL), anterior cingulate cortex (ACC), and posterior cingulate cortex (PCC), 2 DTI (FA, MD) changes in the pons, genu, and splenium of the corpus callosum, and 3 Structural MRI abnormalities in the precuneus, IPL, ACC, and PCC. A novel ReHo component was found to distinguish PTSD and trauma-exposed controls, including the precuneus, IPL, middle frontal gyrus, middle occipital gyrus, and cerebellum. This study reveals that PTSD individuals exhibit intertwined functional and structural anomalies within the default mode network. Some alterations within this network may serve as a potential marker to distinguish between PTSD patients and trauma-exposed controls.


Cyclonic Storms , Stress Disorders, Post-Traumatic , Humans , Diffusion Tensor Imaging , Stress Disorders, Post-Traumatic/pathology , Brain Mapping , Brain/pathology , Magnetic Resonance Imaging/methods
7.
NMR Biomed ; 37(1): e5035, 2024 Jan.
Article En | MEDLINE | ID: mdl-37721094

The aim of the current study was to investigate the feasibility of three-dimensional ultrashort echo time quantitative susceptibility mapping (3D UTE-QSM) for the assessment of gadolinium (Gd) deposition in cortical bone. To this end, 40 tibial bovine cortical bone specimens were divided into five groups then soaked in phosphate-buffered saline (PBS) solutions with five different Gd concentrations of 0, 0.4, 0.8, 1.2, and 1.6 mmol/L for 48 h. Additionally, eight rabbits were randomly allocated into three groups, consisting of a normal-dose macrocyclic gadolinium-based contrast agent (GBCA) group (n = 3), a high-dose macrocyclic GBCA group (n = 3), and a control group (n = 2). All bovine and rabbit tibial bone samples underwent magnetic resonance imaging (MRI) on a 3-T clinical MR system. A 3D UTE-Cones sequence was utilized to acquire images with five different echo times (i.e., 0.032, 0.2, 0.4, 0.8, and 1.2 ms). The UTE images were subsequently processed with the morphology-enabled dipole inversion algorithm to yield a susceptibility map. The average susceptibility was calculated in three regions of interest in the middle of each specimen, and the Pearson's correlation between the estimated susceptibility and Gd concentration was calculated. The bone samples soaked in PBS with higher Gd concentrations exhibited elevated susceptibility values. A mean susceptibility value of -2.47 ± 0.23 ppm was observed for bovine bone soaked in regular PBS, while the mean QSM value increased to -1.75 ± 0.24 ppm for bone soaked in PBS with the highest Gd concentration of 1.6 mmol/L. A strong positive correlation was observed between Gd concentrations and QSM values. The mean susceptibility values of rabbit tibial specimens in the control group, normal-dose GBCA group, and high-dose GBCA group were -4.11 ± 1.52, -3.85 ± 1.33, and -3.39 ± 1.35 ppm, respectively. In conclusion, a significant linear correlation between Gd in cortical bone and QSM values was observed. The preliminary results suggest that 3D UTE-QSM may provide sensitive noninvasive assessment of Gd deposition in cortical bone.


Gadolinium , Imaging, Three-Dimensional , Animals , Cattle , Rabbits , Bone and Bones/diagnostic imaging , Contrast Media , Cortical Bone/diagnostic imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods
8.
Nat Prod Res ; : 1-9, 2023 Nov 11.
Article En | MEDLINE | ID: mdl-37950734

Using 18ß-glycyrrhetinic acid (GA) as the lead compound, fourteen GA sulphonate derivatives (3a-n) were prepared by modifying its C-3 OH group, and their structures were well confirmed by 1H NMR, 13C NMR, HRMS and melting points. Moreover, we screened the anti-oomycete activity of these compounds against Phytophthora capsici by using the mycelial growth rate method. Among the fourteen GA sulphonate derivatives evaluated, four compounds 3f, 3j, 3k and 3l exhibited more potent anti-oomycete activity than that of the positive control zoxamide (EC50 = 25.17 mg/L), and had the median effective concentration (EC50) values of 23.04, 16.16, 22.55, and 13.93 mg/L, respectively. Especially compound 3l showed the best anti-oomycete activity against P. capsici with EC50 value of 13.93 mg/L. Overall, the introduction of sulfonyloxy groups at the C-3 position of GA has a significant impact on its anti-oomycete activity, and the corresponding derivative activity varies significantly with different substituents R.

9.
Addict Biol ; 28(10): e13329, 2023 Oct.
Article En | MEDLINE | ID: mdl-37753571

The temporal variability of the dynamic functional connectivity (dFC) has been suggested as a useful metric for studying abnormal cognitive function. This study aimed to explore the associations between the temporal properties of dFC and memory performance in betel quid dependence (BQD). Sixty-four BQD individuals and 47 gender- and age-matched healthy controls (HCs) underwent functional magnetic resonance imaging and a series of neuropsychological assessments. The dFC was constructed by calculating the Pearson correlation coefficients within a sliding window and was clustered into three functional connectivity states using k-means clustering. The dFC temporal properties derived from the cluster results were compared between the BQD and HC groups. The results showed that States 1 and 3 featured more frequent and weak connectivity, and State 2 featured less frequent and strong connectivity. There were significant differences for mean dwell time (MDT) in State 3 (p = 0.022) and fraction of time in State 2 (p = 0.018) between the BQD and HC groups. Pearson correlation analyses showed that the MDT in State 1 was negatively correlated with long delay free recall and short delay free recall, and the MDT in State 3 was positively correlated with false positive of long delay recall. Our findings provide strong evidence that MDT match the memory performance and suggest new insights into the pathophysiological mechanism of memory disorders in BQD individuals.

10.
Neurol Sci ; 44(12): 4499-4509, 2023 Dec.
Article En | MEDLINE | ID: mdl-37393206

BACKGROUND: Abnormal white matter has been reported in patients with end-stage renal disease (ESRD). However, few studies have investigated the relationship between specific damage segments and cognition in ESRD. This study aimed to delineate white matter alterations in ESRD and its relationship with cognition. METHODS: A total of 36 patients undergoing hemodialysis and 25 healthy controls underwent diffusion tensor imaging (DTI) and a series of neuropsychiatric tests. Automated fiber quantification was used to extract distinct DTI indices, and the relationship between the specific segment of the white matter and clinical properties was investigated. Furthermore, a support vector machine was applied to differentiate patients with ESRD from healthy controls. RESULTS: Fractional anisotropy values decreased in multiple fiber bundles, including bilateral thalamic radiata, cingulum cingulate, inferior fronto-occipital fasciculus (IFOF), uncinate, Callosum_Forceps_Major/Callosum_Forceps_Minor (CFMaj/CFMin), and left uncinate from the tract level in patients with ESRD. Specific damaged segments were detected in 8 fiber bundles, including bilateral thalamic radiation, cingulum cingulate, IFOF, CFMin, and left corticospinal tract. Few alterations in these fiber bundles were correlated with cognition impairment and hemoglobin levels. The tract profiles of the left thalamic radiata and left cingulum cingulate could be used to differentiate hemodialysis patients from healthy controls, with an accuracy of 76.9% and 67.6%, respectively. CONCLUSIONS: This study revealed white matter damage in hemodialysis patients. This damage occurred in specific segments of the tract, especially in the left thalamic radiata and left cingulum cingulate, which might become a new biomarker for patients with ESRD and cognition impairment.


Kidney Failure, Chronic , White Matter , Humans , White Matter/diagnostic imaging , Diffusion Tensor Imaging/methods , Corpus Callosum , Renal Dialysis/adverse effects , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/diagnostic imaging , Kidney Failure, Chronic/therapy , Brain/diagnostic imaging , Anisotropy
11.
Phys Med Biol ; 68(13)2023 Jun 23.
Article En | MEDLINE | ID: mdl-37285863

Objective.High-resolution multi-modal magnetic resonance imaging (MRI) is crucial in clinical practice for accurate diagnosis and treatment. However, challenges such as budget constraints, potential contrast agent deposition, and image corruption often limit the acquisition of multiple sequences from a single patient. Therefore, the development of novel methods to reconstruct under-sampled images and synthesize missing sequences is crucial for clinical and research applications.Approach. In this paper, we propose a unified hybrid framework called SIFormer, which utilizes any available low-resolution MRI contrast configurations to complete super-resolution (SR) of poor-quality MR images and impute missing sequences simultaneously in one forward process. SIFormer consists of a hybrid generator and a convolution-based discriminator. The generator incorporates two key blocks. First, the dual branch attention block combines the long-range dependency building capability of the transformer with the high-frequency local information capture capability of the convolutional neural network in a channel-wise split manner. Second, we introduce a learnable gating adaptation multi-layer perception in the feed-forward block to optimize information transmission efficiently.Main results. Comparative evaluations against six state-of-the-art methods demonstrate that SIFormer achieves enhanced quantitative performance and produces more visually pleasing results for image SR and synthesis tasks across multiple datasets.Significance. Extensive experiments conducted on multi-center multi-contrast MRI datasets, including both healthy individuals and brain tumor patients, highlight the potential of our proposed method to serve as a valuable supplement to MRI sequence acquisition in clinical and research settings.


Magnetic Resonance Imaging , Neural Networks, Computer , Humans , Magnetic Resonance Imaging/methods , Contrast Media , Image Processing, Computer-Assisted/methods
12.
Front Neurosci ; 17: 1165446, 2023.
Article En | MEDLINE | ID: mdl-37383103

Quantitative susceptibility mapping (QSM) quantifies the distribution of magnetic susceptibility and shows great potential in assessing tissue contents such as iron, myelin, and calcium in numerous brain diseases. The accuracy of QSM reconstruction was challenged by an ill-posed field-to-susceptibility inversion problem, which is related to the impaired information near the zero-frequency response of the dipole kernel. Recently, deep learning methods demonstrated great capability in improving the accuracy and efficiency of QSM reconstruction. However, the construction of neural networks in most deep learning-based QSM methods did not take the intrinsic nature of the dipole kernel into account. In this study, we propose a dipole kernel-adaptive multi-channel convolutional neural network (DIAM-CNN) method for the dipole inversion problem in QSM. DIAM-CNN first divided the original tissue field into high-fidelity and low-fidelity components by thresholding the dipole kernel in the frequency domain, and it then inputs the two components as additional channels into a multichannel 3D Unet. QSM maps from the calculation of susceptibility through multiple orientation sampling (COSMOS) were used as training labels and evaluation reference. DIAM-CNN was compared with two conventional model-based methods [morphology enabled dipole inversion (MEDI) and improved sparse linear equation and least squares (iLSQR) and one deep learning method (QSMnet)]. High-frequency error norm (HFEN), peak signal-to-noise-ratio (PSNR), normalized root mean squared error (NRMSE), and the structural similarity index (SSIM) were reported for quantitative comparisons. Experiments on healthy volunteers demonstrated that the DIAM-CNN results had superior image quality to those of the MEDI, iLSQR, or QSMnet results. Experiments on data with simulated hemorrhagic lesions demonstrated that DIAM-CNN produced fewer shadow artifacts around the bleeding lesion than the compared methods. This study demonstrates that the incorporation of dipole-related knowledge into the network construction has a potential to improve deep learning-based QSM reconstruction.

13.
Transl Oncol ; 31: 101648, 2023 May.
Article En | MEDLINE | ID: mdl-36905870

BACKGROUND: Intravoxel incoherent motion (IVIM) plays an important role in predicting treatment responses in patient with nasopharyngeal carcinoma (NPC). The goal of this study was to develop and validate a radiomics nomogram based on IVIM parametric maps and clinical data for the prediction of treatment responses in NPC patients. METHODS: Eighty patients with biopsy-proven NPC were enrolled in this study. Sixty-two patients had complete responses and 18 patients had incomplete responses to treatment. Each patient received a multiple b-value diffusion-weighted imaging (DWI) examination before treatment. Radiomics features were extracted from IVIM parametric maps derived from DWI image. Feature selection was performed by the least absolute shrinkage and selection operator method. Radiomics signature was generated by support vector machine based on the selected features. Receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) values were used to evaluate the diagnostic performance of radiomics signature. A radiomics nomogram was established by integrating the radiomics signature and clinical data. RESULTS: The radiomics signature showed good prognostic performance to predict treatment response in both training (AUC = 0.906, P<0.001) and testing (AUC = 0.850, P<0.001) cohorts. The radiomic nomogram established by integrating the radiomic signature with clinical data significantly outperformed clinical data alone (C-index, 0.929 vs 0.724; P<0.0001). CONCLUSIONS: The IVIM-based radiomics nomogram provided high prognostic ability to treatment responses in patients with NPC. The IVIM-based radiomics signature has the potential to be a new biomarker in prediction of the treatment responses and may affect treatment strategies in patients with NPC.

14.
Radiol Med ; 128(2): 160-170, 2023 Feb.
Article En | MEDLINE | ID: mdl-36670236

PURPOSE: To build an automatic computer-aided diagnosis (CAD) pipeline based on multiparametric magnetic resonance imaging (mpMRI) and explore the role of different imaging features in the classification of breast cancer. MATERIALS AND METHODS: A total of 222 histopathology-confirmed breast lesions, together with their BI-RADS scores, were included in the analysis. The cohort was randomly split into training (159) and test (63) cohorts, and another 50 lesions were collected as an external cohort. An nnUNet-based lesion segmentation model was trained to automatically segment lesion ROI, from which radiomics features were extracted for diffusion-weighted imaging (DWI), T2-weighted imaging (T2WI), and contrast-enhanced (DCE) pharmacokinetic parametric maps. Models based on combinations of sequences were built using support vector machine (SVM) and logistic regression (LR). Also, the performance of these sequence combinations and BI-RADS scores were compared. The Dice coefficient and AUC were calculated  to evaluate the segmentation and classification results. Decision curve analysis (DCA) was used to assess clinical utility. RESULTS: The segmentation model achieved a Dice coefficient of 0.831 in the test cohort. The radiomics model used only three features from diffusion coefficient (ADC) images, T2WI, and DCE-derived kinetic mapping, and achieved an AUC of 0.946 [0.883-0.990], AUC of 0.842 [0.6856-0.998] in the external cohort, which was higher than the BI-RADS score with an AUC of 0.872 [0.752-0.975]. The joint model using both radiomics score and BI-RADS score achieved the highest test AUC of 0.975 [0.935-1.000], with a sensitivity of 0.920 and a specificity of 0.923. CONCLUSION: Three radiomics features can be used to construct an automatic radiomics-based pipeline to improve the diagnosis of breast lesions and reduce unnecessary biopsies, especially when using jointly with BI-RADS scores.


Breast Neoplasms , Multiparametric Magnetic Resonance Imaging , Female , Humans , Breast/pathology , Breast Neoplasms/pathology , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods , Retrospective Studies
15.
Brain Imaging Behav ; 17(2): 213-222, 2023 Apr.
Article En | MEDLINE | ID: mdl-36576688

Super typhoons can lead to post-traumatic stress disorder (PTSD), which can adversely affect a person's mental health after a disaster. Neuroimaging studies suggest that patients with PTSD may have post-exposure abnormalities of the white matter. However, little is known about these defects, if they are localized to specific regions of the white matter fibers, or whether they may be potential biomarkers for PTSD. Typhoon survivors with PTSD (n = 27), trauma-exposed controls (TEC) (n = 33), and healthy controls (HCs) (n = 30) were enrolled. We used automated fiber quantification (AFQ) to process the participants' DTI and compared diffusion metrics among the three groups. To evaluate diagnostic value, we used support vector machine (SVM) and a random forest (RF) classifier to build a machine learning model. White matter fiber segmentation between the three groups was found to be statistically significant for the fractional anisotropy (FA) value of the right anterior thalamic radiation (ATR) (26-50 nodes) and right uncinate fasciculus (UF) (60-72 nodes) (FDR correction, p < 0.05). By analyzing the characteristics of the machine learning model, the two most important variables were the right ATR and right UF for differentiating PTSD and trauma-exposed controls (TEC) from the healthy controls (HC). In addition, the left cingulum cingulate and left UF were the most critical variables in the differentiation of PTSD and TEC. AFQ with machine learning can localize abnormalities in specific regions of white matter fibers. These regions may be used as a diagnostic biomarker for PTSD.


Cyclonic Storms , Stress Disorders, Post-Traumatic , White Matter , Humans , White Matter/diagnostic imaging , Stress Disorders, Post-Traumatic/diagnostic imaging , Diffusion Tensor Imaging/methods , Magnetic Resonance Imaging , Anisotropy , Brain/diagnostic imaging
17.
Tomography ; 8(6): 2902-2914, 2022 12 10.
Article En | MEDLINE | ID: mdl-36548535

Exposure to aristolochic acid (AA) is of increased concern due to carcinogenic and nephrotoxic effects, and incidence of aristolochic acid nephropathy (AAN) is increasing. This study characterizes renal alterations during the acute phase of AAN using parametric magnetic resonance imaging (MRI). An AAN and a control group of male Wistar rats received administration of aristolochic acid I (AAI) and polyethylene glycol (PEG), respectively, for six days. Both groups underwent MRI before and 2, 4 and 6 days after AAI or PEG administration. T2 relaxation times and apparent diffusion coefficients (ADCs) were determined for four renal layers. Serum creatinine levels (sCr) and blood urea nitrogen (BUN) were measured. Tubular injury scores (TIS) were evaluated based on histologic findings. Increased T2 values were detected since day 2 in the AAN group, but decreased ADCs and increased sCr levels and BUN were not detected until day 4. Significant linear correlations were observed between T2 of the cortex and the outer stripe of outer medulla and TIS. Our results demonstrate that parametric MRI facilitates early detection of renal injury induced by AAI in a rat model. T2 mapping may be a valuable tool for assessing kidney injury during the acute phase of AAN.


Acute Kidney Injury , Kidney , Rats , Male , Animals , Rats, Wistar , Kidney/diagnostic imaging , Kidney/pathology , Acute Kidney Injury/chemically induced , Acute Kidney Injury/diagnostic imaging , Acute Kidney Injury/pathology , Magnetic Resonance Imaging
18.
Front Psychiatry ; 13: 1036728, 2022.
Article En | MEDLINE | ID: mdl-36545042

Background: To evaluate brain white matter diffusion characteristics and anatomical network alterations in betel quid dependence (BQD) chewers using high angular resolution diffusion imaging (HARDI). Methods: The current study recruited 53 BQD chewers and 37 healthy controls (HC) in two groups. We explored regional diffusion metrics alternations in the BQD group compared with the HC group using automated fiber quantification (AFQ). We further employed the white matter (WM) anatomical network of HARDI to explore connectivity alterations in BQD chewers using graph theory. Results: BQD chewers presented significantly lower FA values in the left and right cingulum cingulate, the left and right thalamic radiation, and the right uncinate. The BQD has a significantly higher RD value in the right uncinate fasciculus than the HC group. At the global WM anatomical network level, global network efficiency (p = 0.008) was poorer and Lp (p = 0.016) was greater in the BQD group. At the nodal WM anatomical network level, nodal efficiency (p < 0.05) was lower in the BQD group. Conclusion: Our findings provide novel morphometric evidence that brain structural changes in BQD are characterized by white matter diffusivity and anatomical network connectivity among regions of the brain, potentially leading to the enhanced reward system and impaired inhibitory control.

19.
Microsyst Nanoeng ; 8: 121, 2022.
Article En | MEDLINE | ID: mdl-36407888

Surface acoustic wave (SAW) technology has been widely developed for ultraviolet (UV) detection due to its advantages of miniaturization, portability, potential to be integrated with microelectronics, and passive/wireless capabilities. To enhance UV sensitivity, nanowires (NWs), such as ZnO, are often applied to enhance SAW-based UV detection due to their highly porous and interconnected 3D network structures and good UV sensitivity. However, ZnO NWs are normally hydrophilic, and thus, changes in environmental parameters such as humidity will significantly influence the detection precision and sensitivity of SAW-based UV sensors. To solve this issue, in this work, we proposed a new strategy using ZnO NWs wrapped with hydrophobic silica nanoparticles as the effective sensing layer. Analysis of the distribution and chemical bonds of these hydrophobic silica nanoparticles showed that numerous C-F bonds (which are hydrophobic) were found on the surface of the sensitive layer, which effectively blocked the adsorption of water molecules onto the ZnO NWs. This new sensing layer design minimizes the influence of humidity on the ZnO NW-based UV sensor within the relative humidity range of 10-70%. The sensor showed a UV sensitivity of 9.53 ppm (mW/cm2)-1, with high linearity (R 2 value of 0.99904), small hysteresis (<1.65%) and good repeatability. This work solves the long-term dilemma of ZnO NW-based sensors, which are often sensitive to humidity changes.

20.
ACS Appl Mater Interfaces ; 14(48): 54276-54286, 2022 Dec 07.
Article En | MEDLINE | ID: mdl-36417548

Machine-learning assisted handwriting recognition is crucial for development of next-generation biometric technologies. However, most of the currently reported handwriting recognition systems are lacking in flexible sensing and machine learning capabilities, both of which are essential for implementation of intelligent systems. Herein, assisted by machine learning, we develop a new handwriting recognition system, which can be applied as both a recognizer for written texts and an encryptor for confidential information. This flexible and intelligent handwriting recognition system combines a printed circuit board with graphene oxide-based hydrogel sensors. It offers fast response and good sensitivity and allows high-precision recognition of handwritten content from a single letter to words and signatures. By analyzing 690 acquired handwritten signatures obtained from seven participants, we successfully demonstrate a fast recognition time (less than 1 s) and a high recognition rate (∼91.30%). Our developed handwriting recognition system has great potential in advanced human-machine interactions, wearable communication devices, soft robotics manipulators, and augmented virtual reality.


Handwriting , Hydrogels , Machine Learning , Humans , Hydrogels/chemistry , Robotics/methods
...